首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel castor oil‐based polyurethane/α‐zirconium phosphate (PU/α‐ZrP) composite films with different α‐ZrP loading (0–1.6 wt %) and different NCO/OH molar ratios were synthesized by a solution casting method. The characteristic properties of the PU/α‐ZrP composite films were examined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing. The results from Fourier transform infrared spectroscopy indicated that strong intermolecular hydrogen bonding formed between α‐ZrP and PU, XRD and SEM results revealed that the α‐ZrP particles were uniformly distributed in the PU matrix at low loading, and obvious aggregation existed at high loading. Because of hydrogen bonding interactions, the maximum values of tensile strength were obtained with 0.6 wt % α‐ZrP loading and 1.5 of NCO/OH molar ratio in the matrix. Evidence proved that the induced α‐ZrP used as a new filler material can affect considerably the mechanical and thermal properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Semi‐interpenetrating polymer network (semi‐IPN) films with different NCO/OH molar ratios of the urethane prepolymer, coded as UB, were prepared from polyurethane (PU) and benzyl konjac glucomannan (B‐KGM) by a casting method. The effect of the NCO/OH molar ratio of the urethane prepolymer on the miscibility and properties of the UB films was investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, and swelling and tensile tests. The results indicated that, with an increase of the NCO/OH ratio, the crosslink density of the UB films increased, resulting in improved miscibility between PU and B‐KGM and a relatively high light transmittance of the UB films. However, the thermal stability of the UB films decreased with increase of the NCO/OH ratio of the urethane prepolymer, due to the depolymerization of the urethane bonds of the PU networks. When the NCO/OH ratio increased from 2 to 4, the tensile strength of the UB films increased from 15 to 27 MPa, while the breaking elongation decreased from 72 to 16%, resulting from the chemical and physical crosslinks, namely, the enhancement of the covalent bonds and hydrogen‐bonding networks. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1304–1310, 2003  相似文献   

3.
Bamboo tar is a natural resource of aromatic polyol obtained from a residue of by setting or distilling crude bamboo vinegar. In this study, the two‐packed polyurethane (PU) coatings were prepared by blending bamboo tar and castor oil varying with different weight ratios and polymeric toluene diisocyanate (PTDI) was used as a hardener at the NCO/OH molar ratio of 1.0. Six kinds of PU coatings were formulated and the viscosity, pot‐life, drying time, mechanical properties (hardness, tensile strength, impact resistance, adhesion, and abrasion resistance), gel content, durability, lightfastness, FTIR, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) were characterized. The results indicated that the bamboo tar containing PU film appearance is semitransparent yellow‐brown color and the wood texture could be kept after finishing. All PU films possessed excellent adhesion as well as durability. The increase in bamboo tar content led to shorten drying time of coatings and to increase in hardness, tensile strength, lightfastness, and thermal stability of films. From these results and due to a light smell flavor, it is suggested that the bamboo tar‐based PU coatings is suitable to be used as an exterior wood coatings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A regenerated cellulose film (RC) was coated with a graft‐IPNs coating, which was composed of castor oil‐based polyurethane and 2.8 wt % nitrolignin (NL), to obtain water‐resistant films. The effects of NCO/OH molar ratio and different polyols, such as 1,4‐butanediol (BDO) and trimethanol propane (TMP), on the structure and properties of the coated RC films were investigated. With an increase of the NCO/OH molar ratio, the tensile strength of the coated films increased, but the water resistivity and size contraction hardly changed. The coated films with TMP exhibited the higher breaking elongation at 1.5 of the NCO/OH molar ratio, while those with BDO have more excellent tensile strength, water resistivity, and dimensional stability. The coated films with the graft‐IPNs coating exhibited superior water resistivity and dimensional stability. The light transmittance of the coated films was more excellent than that of the RC film. Moreover, the results from the IR and electron probe microanalysis (EPMA) showed that the chemical bonding occurred between cellulose and coating, and the introduction of NL plays an important role in the enhancement of the interface adhesion of the coated films. Atomic force microscopy (AFM) depicted the flat and dense surface of the coated films, which restricted the water vapor penetration and the size contraction, resulting in the enhancement of water resistivity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1799–1806, 2002  相似文献   

5.
Polyurethanes (PU) were prepared by reacting palm oil‐based polyols and aromatic diisocyanate (toluene 2, 4 diisocyanates). The content of oleic acid was varied in the polyester polyols and the hydroxyl value was fixed to be 140 mg KOH g?1. The NCO/OH ratios were varied to 1.2, 1.4, and 1.6. Crosslinking density of the PU was measured by swelling in toluene at room temperature. It was found that the crosslinking increased with decreasing oleic acid content and increasing NCO/OH ratio. The samples were assessed by thermogravimetric analysis, differential scanning calorimetric, and short‐term creep measurements. The highest rupture strength of the PU films was 36 MPa and thermostability improved as the oleic acid content and the NCO/OH ratios were increased in the sample. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
This study focuses on the effect of isocyanate (NCO)/hydroxyl (OH) group ratios and chemical modification of oil palm empty fruit bunches (EFBs) with toluene diisocyanate (TDI) and hexamethylene diisocyanate (HMDI) on the mechanical properties of EFB–polyurethane (PU) composites. The tensile, flexural, and impact properties are affected by the NCO/OH ratios. The tensile strengths, flexural strengths, and toughness increase as the NCO/OH increases; however, the modulus decreases. The reduction in the modulus is attributable to the increased flexibility of the PU linkages. Chemical modification of the EFBs increases the tensile strength, flexural strength, and toughness; however, the modulus is lowered as the percentage of treated EFB is increased. Impact strength results show that the strength increases as the NCO/OH ratio is increased. At NCO/OH ratios of 1.0 and 1.1, the composites with HMDI‐treated fibers exhibit higher impact strength than those with TDI‐treated and untreated fibers, respectively. This may be due to the longer and more flexible chain length of HMDI as compared to TDI, which enables the composites to absorb more energy before failure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The limited availability of fossil resource is causing the urgent need to get renewable chemicals. Solvent liquefaction can convert rice husk into bio‐based chemicals. Rice husk was liquefied in polyhydric alcohol catalyzed by sulfuric acid under atmospheric pressure. The viscosity, residue content, and weight average molecular weight (Mw) of liquefied rice husk were 3089 cps, 23.6% and 4100, respectively. Prolonging the liquefaction time decreased the residue content and increased the average molecular weight. Polyurethane (PU) foams were successfully prepared from the liquefied rice husk with different molar ratios of NCO to OH (NCO/OH). The mechanical properties of PU foams showed that the compressive strength in the vertical direction is higher than that in the horizontal direction. With Increase of the NCO/OH molar ratio from 1.0 to 2.0, compressive strength in the vertical direction of PU foams increased from 70.6 to 114.7 kPa at 10% strain. Thermal analysis results showed that thermal stability of liquefied rice husk‐based PU resins was better than that of fossil‐ and liquefied wood‐ based PU resins. Increasing the NCO/OH molar ratio and inorganic residue of rice husk can help to increase thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45910.  相似文献   

8.
Polyurethanes were obtained by the reaction of hydroxyl groups of castor oil with hexamethylene diisocyanate, isophorone diisocyanate or diphenylmethane diisocyanate using an NCO/OH ratio of 1.6. These polyurethanes were swollen in ethyl acrylate monomer and subsequently polymerized by radical polymerization initiated with benzoyl peroxide in the presence of the crosslinking agent ethylene glycol dimethacrylate. A series of interpenetrating polymer networks (PU/PEA IPNs) were obtained as tough films by casting in glass moulds. The characteristics of these films were determined: resistance to chemical reagents, thermal behaviour (DSC, TGA), tensile strength, Young's modulus, elongation at break (%) and Shore A hardness. The morphology was determined by scanning electron microscopy, and the dielectric properties such as electrical conductivity, dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) were studied.  相似文献   

9.
10.
Polyols synthesized by ozonolysis and hydrogenation from canola oil were reacted with aliphatic 1,6-hexamethylene diisocyanates (HDI) to produce polyurethane (PU) elastomers. The properties of the materials were examined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), modulated differential scanning calorimetry (MDSC), and thermogravimetric analysis (TGA), and measurements were taken of tensile properties. The effect of dangling chains on network properties was assessed. The formation of hydrogen bonds was observed by FTIR. The measured properties were found to be strongly dependent on processing-dependent factors such as the crosslinking density and the molar ratio of polyols to HDI component. The glass transition temperatures (T g) of the elastomers were found to increase as the OH/NCO molar ratio decreased. With the same OH/NCO molar ratio, T g of canola-oil-based PU was higher than that of soybean-oil-based PU. The TGA thermographs showed two well-defined steps of degradation for all the elastomers. In the first step, up to 30% weight loss, the fastest rate of loss was found at 345 °C for canola-oil-based PU while soybean-oil-based PU lost most of the weight in the second step. With the same OH/NCO molar ratio, the elastomers made from canola-oil-based polyol showed slightly higher Young’s modulus and tensile strength.  相似文献   

11.
The curing reaction of tolylene‐2,4‐diisocyanate‐terminated poly(ethylene adipate) (PEA‐TDI) with a mixture of castor oil (CO) and glycerol (GO) with a NCO/OH ratio of 1.0 at 150°C gave crosslinked polyurethane (CO/GO‐PU). All the polyurethanes were elastomeric materials at room temperature. The glass‐transition temperature of the CO/GO‐PU increased with decreasing CO/GO ratio. All the cured polyurethanes had a higher 5% weight loss temperature than PEA‐TDI. The tensile strength and modulus of the polyurethanes increased with decreasing CO/GO ratio, and tensile residual strain after 300% elongation for all the CO/GO‐PUs was almost 0. All the polyurethanes had biodegradability, when measured by a biochemical oxygen demand method in an aqueous medium using activated sludge. The rate of the biodegradation of the polyurethanes increased with an increase of CO/GO ratio. The crosslinked CO‐PU showed much higher biodegradability than the linear PEA‐TDI. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Interpenetrating polymer networks (IPNs) of castor oil-based polyurethanes and polystyrene were prepared by simultaneous polymerization. The liquid prepolyurethanes were formed by reacting the hydroxyl functionality of castor oil with isophorone diisocyanate using different stoichiometric NCO/OH ratios. These prepolyurethanes were mixed with styrene monomer and subsequently polymerized by free radical polymerization initiated by benzoyl peroxide in the presence of the crosslinker 1,4-divinyl benzene. The interpenetrating polymer networks. PU/PS IPNs, were obtained as tough and transparent films by the transfer moulding technique. These IPNs were characterized by the static mechanical properties (tensile strength, Young's modulus and % elongation), thermal properties and morphology. The dielectric relaxation properties (σ, E′, E″ and tanδ) of the IPNs at different temperatures were studied.  相似文献   

13.
Castor oil containing hydroxyl functionality was reacted with 4,4′-diphenylmethanediisocyanate under different stoichiometric ratios of NCO/OH to obtain liquid polyurethanes. These polyurethanes were subsequently interpenetrated with methyl acrylate monomer using ethylene glycol dimethacrylate as a crosslinker by radical polymerization using benzoyl peroxide as an activator. The polyurethane/poly(methyl acrylate) interpenetrating polymer networks (PU/PMA IPNs) were obtained as tough films by transfer molding techniques. All IPNs were characterized by their resistance to chemical reagents, optical properties, thermal behavior, and mechanical properties: tensile strength, Young's modulus, elongation at break (%) and hardness Shore A. The morphology of the IPNs was studied by scanning electron microscopy and dielectric properties: electrical conductivity (σ), dielectric constant (?′), dielectric loss (?″), and loss tangent (tan δ) at different temperatures.  相似文献   

14.
木质素聚氨酯薄膜合成条件及性能的研究   总被引:2,自引:1,他引:1  
以麦草碱木质素、相对分子质量为300和 1000 的聚乙二醇(PEG)及多苯基甲烷多异氰酸酯(PAPI)为原料,以N,N-二甲基甲酰胺为溶剂,使用溶液浇注法固化成型工艺,制备了碱木质素聚氨酯薄膜。通过调整PEG1000与PEG300的比例提高了聚氨酯的力学性能。测定了木质素聚氨酯薄膜的弹性模量、拉伸强度和断裂拉伸率、耐撕裂度。实验结果表明,调节不同相对分子质量聚乙二醇在反应体系中的比例,可以显著提高成膜后的耐撕裂性能,改善由于加入木质素后聚氨酯薄膜过脆的缺点。当使用PEG1000与PEG300物质的量之比值为2.0,异氰酸酯指数为2.5,木质素加入量为 20%(质量分数)时,聚氨酯薄膜的弹性模量为 1.49 GPa、拉伸强度为 36.5 MPa、断裂拉伸率为 12.7%,耐撕裂度为 8460 mN,且成膜性能良好。  相似文献   

15.
Polyurethane (PU) adhesives were prepared from the reaction of polycaprolactone (PCL) polyols based on palm kernel oil based polyesteramide (PPKO) with an aromatic and cycloaliphatic diisocyanate. Four different formulations of PU adhesives were prepared by varying the NCO : OH ratio, in order to investigate the effects of NCO : OH ratios on adhesion strength. The adhesive strength of metal–metal bonding both in dry and hydrothermal ageing—was determined by single lap shear joint testing. The resistance to hydrolysis of the PU adhesives was determined by performing water absorption tests. The water absorption test samples suggested that the durability of the adhesives correlated to lower water absorption due to higher NCO content. The correlation between the crosslinking of the PU network and adhesive strength was also studied by performing swelling tests. The higher NCO content showed that, the higher crosslink density of PUs led to higher cohesion and adhesion strengths. PU1.7 showed optimal properties in terms of durability and resistance to hydrolysis, whereas PU2.0 revealed deterioration in durability and resistance to hydrolysis due to the presence of greater micro‐voids content in the PU2.0 matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41151.  相似文献   

16.
In this study, the effects of NCO/OH ratio on polyurethane composites prepared from propylene oxide‐modified oil palm empty fruit bunch (EFB‐PO) properties were studied. From the results obtained, the diffusion of solvents in the composites produced was classified as Fickian type. The molecular weight between crosslink points and degree of crosslinking were affected as the NCO/OH was increased. This phenomenon was attributed to the interaction between excess NCO and accessible OH groups from EFB‐PO to form a three‐dimensional network. From the mechanical testing results, it was found that the NCO/OH ratio had a significant effect on tensile and flexural test. However, no significant influence was observed on impact strength of the composites produced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Full-interpenetrating polymer networks (IPNs) were prepared from epoxy and castor oil-based polyurethane (PU), by the sequential mode of synthesis and were characterized by different techniques: swelling test, scanning electron microscopy (SEM), thermomechanical analysis (TMA), thermogravimetric analysis (TGA), tensile test, and instrumented impact test. 2,4-Toluene diisocyanate (TDI) was used as a curing agent for castor oil, at a NO/OH ratio = 1.50. Diglycidyl ether of bisphenol A (DGEBA) was cured and crosslinked using 2,4,6-tris(dimethylaminomethyl)phenol (TDMP) at 1.5%, by weight, of epoxy resin. The homogeneous morphology of IPN samples of PU compositions up to 40%, by weight, revealed by SEM may be attributed to some extent to grafting of the PU phase onto the epoxy matrix, which results from the reaction between NCO groups in the PU phase with OH groups in the epoxy matrix. This has some synergistic effect on the thermal resistance and tensile properties of IPNs compared to those of the pure components, such as illustrated by the data from TGA and tensile tests. However, the grafting structure appears not to enhance their impact resistance, which probably requires the formation of rubbery particles of suitable size. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1649–1659, 1998  相似文献   

18.
A series of water‐resistant composites were successfully prepared from a mixture of soy dreg (SD), castor oil, and 2,4‐toluene diisocyanate (TDI) by a one‐step reactive extrusion (REX) process. The structure and properties of the composites were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile testing, and swelling experiments. The results indicated that the toughness of the composites prepared from castor oil based polyurethane and SD was significantly improved. In this case, TDI played an in situ compatibilization role through the crosslinking reaction of ? NCO groups with ? NH2, ? NH? , and ? OH groups in SD and castor oil. With an increase in the molar ratio of ? NCO groups of TDI and ? OH groups of castor oil, the degree of crosslinking, tensile strength, glass‐transition temperature, water resistivity, and solvent resistivity of the composites increased. With an increase in the SD content of the composites, the tensile strength and solvent resistivity of the composites increased because of the reinforcement of the cellulose component in SD. This work provided a simple and effective way of preparing SD‐based composites by a REX process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 953–960, 2006  相似文献   

19.
Films from castor oil‐based polyurethane (PU) prepolymer and nitroguar gum (NGG) with different contents (10–70 wt %) were prepared through solution casting method. The networks of PU crosslinked with 1,4‐butanediol were interpenetrated by linear NGG to form semi‐interpenetrating polymer networks (semi‐IPNs) in the blend films. The miscibility, morphology, and properties of the semi‐IPNs coded as PUNG films were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray diffraction, density measurement, ultraviolet spectroscopy, thermogravimetric analysis, tensile, and solvent‐resistance testing. The results revealed that the semi‐IPNs films have good miscibility over the entire composition ratio of PU to NGG under study. The occurrence of hydrogen‐bonding interaction between PU and NGG played a key role in improvement of the material performance. Compared with the pure PU film, the PUNG films exhibited higher values of tensile strength (11.7–28.4 MPa). Meanwhile, incorporating NGG into the PU networks led to an improvement of thermal stability and better solvent‐resistance of the resulting materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4068–4079, 2007  相似文献   

20.
In this study, bulk polymerized clay‐tethered thermoplastic polyurethane (TPU) composites were synthesized that offered much improved tensile strength with negligible changes in tensile modulus. These composites contained intercalated, tethered layered silicate particles and were synthesized by mixing low molecular weight prepolymer chains containing unreacted –NCO groups with reactive layered silicate clay followed by catalyzed chain extension reaction with butanediol. The molar ratio of –NCO and –OH functional groups in the composite was varied between 1.0 and 1.2. It was found that an appreciable amount of –NCO groups was consumed in reaction with moisture present in the clay and some in quaternary ammonium ion‐catalyzed dimerization and trimerization. Composites with –NCO to –OH molar ratio 1.1 provided the best improvement in mechanical properties—the composite with 5 wt% clay provided a 60% increase in tensile strength and 50% increase in strain at break, while the tensile modulus increased only by 15% over TPU. POLYM. ENG. SCI., 45:1532–1539, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号