首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the self‐assembly and characterization of mesoporous silica thin films with a 3D ordered arrangement of isolated spherical pores. The preparation method was based on solvent‐evaporation induced self‐assembly (EISA), with MTES (CH3–Si(OCH2CH3)3) as the silica precursor and a polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) diblock copolymer as the structure‐directing agent. The synthetic approach was designed to suppress the siloxane condensation rate of the siloxane network, allowing co‐self‐assembly of the silica and the amphiphile, followed by retraction of the PEO chains from the silica matrix and matrix consolidation, to occur unimpeded. The calcined films retained the methyl ligands and exhibited no measurable microporosity, thereby indicating that the 3D‐ordered spherical mesopores are not interconnected. A solvent‐mediated formation mechanism is proposed for the absence of microporosity. Due to their closed porosity and hydrophobicity, the MTES‐based films and MTES‐TEOS (Si(OCH2CH3)4)‐based hybrid films we describe should be promising for applications such as low‐k dielectrics.  相似文献   

2.
In this paper, we report a novel synthesis and selective bioseparation of the composite of Fe3O4 magnetic nanocrystals and highly ordered MCM‐41 type periodic mesoporous silica nanospheres. Monodisperse superparamagnetic Fe3O4 nanocrystals were synthesized by thermal decomposition of iron stearate in diol in an autoclave at low temperature. The synthesized nanocrystals were encapsulated in mesoporous silica nanospheres through the packing and self‐assembly of composite nanocrystal–surfactant micelles and surfactant/silica complex. Different from previous studies, the produced magnetic silica nanospheres (MSNs) possess not only uniform nanosize (90 ~ 140 nm) but also a highly ordered mesostructure. More importantly, the pore size and the saturation magnetization values can be controlled by using different alkyltrimethylammonium bromide surfactants and changing the amount of Fe3O4 magnetic nanocrystals encapsulated, respectively. Binary adsorption and desorption of proteins cytochrome c (cyt c) and bovine serum albumin (BSA) demonstrate that MSNs are an effective and highly selective adsorbent for proteins with different molecular sizes. Small particle size, high surface area, narrow pore size distribution, and straight pores of MSNs are responsible for the high selective adsorption capacity and fast adsorption rates. High magnetization values and superparamagnetic property of MSNs provide a convenient means to remove nanoparticles from solution and make the re‐dispersion in solution quick following the withdrawal of an external magnetic field.  相似文献   

3.
Herein, we demonstrate an ammonia nitridation approach to synthesize self‐supported ordered mesoporous metal nitrides (CoN and CrN) from mesostructured metal oxide replicas (Co3O4 and Cr2O3), which were nanocastly prepared by using mesoporous silica SBA‐15 as a hard template. Two synthetic routes are adopted. One route is the direct nitridation of mesoporous metal oxide nanowire replicas templated from SBA‐15 to metal nitrides. By this method, highly ordered mesoporous cobalt nitrides (CoN) can be obtained by the transformation of Co3O4 nanowire replica under ammonia atmosphere from 275 to 350 °C, without a distinct lose of the mesostructural regularity. Treating the samples above 375 °C leads to the formation of metallic cobalt and the collapse of the mesostructure due to large volume shrinkage. The other route is to transform mesostructured metal oxides/silica composites to nitrides/silica composites at 750–1000 °C under ammonia. Ordered mesoporous CrN nanowire arrays can be obtained after the silica template removal by NaOH erosion. A slowly temperature‐program‐decrease process can reduce the influence of silica nitridation and improve the purity of final CrN product. Small‐angle XRD patterns and TEM images showed the 2‐D ordered hexagonal structure of the obtained mesoporous CoN and CrN nanowires. Wide‐angle XRD patterns, HRTEM images, and SAED patterns revealed the formation of crystallized metal nitrides. Nitrogen sorption analyses showed that the obtained materials possessed high surface areas (70–90 m2 g?1) and large pore volumes (about 0.2 cm3 g?1).  相似文献   

4.
A controllable one‐pot method to synthesize N‐doped ordered mesoporous carbons (NMC) with a high N content by using dicyandiamide as a nitrogen source via an evaporation‐induced self‐assembly process is reported. In this synthesis, resol molecules can bridge the Pluronic F127 template and dicyandiamide via hydrogen bonding and electrostatic interactions. During thermosetting at 100 °C for formation of rigid phenolic resin and subsequent pyrolysis at 600 °C for carbonization, dicyandiamide provides closed N species while resol can form a stable framework, thus ensuring the successful synthesis of ordered N‐doped mesoporous carbon. The obtained N‐doped ordered mesoporous carbons possess tunable mesostructures (p6m and Im m symmetry) and pore size (3.1–17.6 nm), high surface area (494–586 m2 g?1), and high N content (up to 13.1 wt%). Ascribed to the unique feature of large surface area and high N contents, NMC materials show high CO2 capture of 2.8–3.2 mmol g?1 at 298 K and 1.0 bar, and exhibit good performance as the supercapacitor electrode with specific capacitances of 262 F g?1 (in 1 M H2SO4) and 227 F g?1 (in 6 M KOH) at a current density of 0.2 A g?1.  相似文献   

5.
Aluminum‐containing plugged mesoporous silica has been successfully prepared in an aqueous solution that contains triblock copolymer templates, nitrates, and silica sources but without using mineral acid. The acidity of the solution can be finely tuned from pH 1.4 to 2.8 according to the amount of the introduced aluminum species which ranged from an Al/Si molar ratio of 0.25/1 to 4.0/1. The aluminum nitrate additive in the starting mixture, along with the weak acidity produced by the nitrates, contributes to the formation of plugged hexagonal structures and the introduction of different amounts of aluminum species into the mesostructure. Characterization by X‐ray diffraction, transmission electron microscopy, and N2 sorption measurements show that the Al‐containing plugged silicas possess well‐ordered hexagonal mesostructures with high surface areas (700–860 m2 g–1), large pore volume (0.77–1.05 cm3 g–1) and, more importantly, combined micropores and/or small mesopores in the cylindrical channels. Inductively coupled plasma–atomic emission spectrometry results show that 0.7–3.0 wt % aluminum can be introduced into the final samples. 27Al MAS NMR results display that about 43–60% aluminum species are incorporated into the skeleton of the Al‐containing silicas and the amount of the framework aluminum increases as the initial added nitrates rises. Scanning electron microscopy images reveal that the directly synthesized Al‐containing plugged silica has a similar morphology to that of traditional SBA‐15. Furthermore, the Al‐containing plugged samples have excellent performances in the adsorption and the catalytic decomposition of isopropyl alcohol and nitrosamine. Finally, the direct synthesis method is used to produce plugged mesoporous silicas that contain other metals such as chromium and copper, and the resultant samples also show good catalytic activities.  相似文献   

6.
Nanocrystals and their ordered arrays hold many important applications in fields such as catalysis, surface‐enhanced Raman spectroscopy based sensors, memory storage, and electronic and optical nanodevices. Herein, a simple and general method to synthesize ordered, three‐dimensional, transparent gold nanocrystal/silica superlattice thin films by self‐assembly of gold nanocrystal micelles with silica or organosilsesquioxane by spin‐coating is reported. The self‐assembly process is conducted under acidic sol–gel conditions (ca. pH 2), ensuring spin‐solution homogeneity and stability and facilitating the formation of ordered and transparent gold nanocrystal/silica films. The monodisperse nanocrystals are organized within inorganic host matrices as a face‐centered cubic mesostructure, and characterized by transmission electron spectroscopy and X‐ray diffraction.  相似文献   

7.
The synthesis of three‐dimensionally ordered, transparent gold‐nanocrystal (NC)/silica superlattice thin films using the self‐assembly (by spin‐coating) of water‐soluble gold nanocrystal micelles and soluble silica is reported by Fan and co‐workers on p. 891. The robust, 3D NC/silica superlattice films are of interest for the development of collective optical and electronic phenomena, and, importantly, for the integration of NC arrays into device architectures. Nanocrystals and their ordered arrays hold many important applications in fields such as catalysis, surface‐enhanced Raman spectroscopy based sensors, memory storage, and electronic and optical nanodevices. Herein, a simple and general method to synthesize ordered, three‐dimensional, transparent gold nanocrystal/silica superlattice thin films by self‐assembly of gold nanocrystal micelles with silica or organosilsesquioxane by spin‐coating is reported. The self‐assembly process is conducted under acidic sol–gel conditions (ca. pH 2), ensuring spin‐solution homogeneity and stability and facilitating the formation of ordered and transparent gold nanocrystal/silica films. The monodisperse nanocrystals are organized within inorganic host matrices as a face‐centered cubic mesostructure, and characterized by transmission electron spectroscopy and X‐ray diffraction.  相似文献   

8.
Highly ordered mesoporous crystalline MoSe2 is synthesized using mesoporous silica SBA‐15 as a hard template via a nanocasting strategy. Selenium powder and phosphomolybdic acid (H3PMo12O40) are used as Se and Mo sources, respectively. The obtained products have a highly ordered hexagonal mesostructure and a rod‐like particle morphology, analogous to the mother template SBA‐15. The UV‐vis‐NIR spectrum of the material shows a strong light absorption throughout the entire visible wavelength region. The direct bandgap is estimated to be 1.37 eV. The high surface area MoSe2 mesostructure shows remarkable photocatalytic activity for the degradation of rhodamine B, a model organic dye, in aqueous solution under visible light irradiation. In addition, the synthesized mesoporous MoSe2 possess a reversible lithium storage capacity of 630 mAh g?1 for at least 35 cycles without any notable decrease. The rate performance of mesoporous MoSe2 is much better than that of analogously synthesized mesoporous MoS2, making it a promising anode for the lithium ion battery.  相似文献   

9.
Crack‐free, mesoporous SnO2 films with highly crystalline pore walls are obtained by evaporation‐induced self‐assembly using a novel amphiphilic block‐copolymer template (“KLE” type, poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide)), which leads to well‐defined arrays of contracted spherical mesopores by suitable heat‐treatment procedures. Because of the improved templating properties of these polymers, a facile heat‐treatment procedure can be applied whilst keeping the mesoscopic order intact up to 600–650 °C. The formation mechanism and the mesostructural evolution are investigated by various state‐of‐the‐art techniques, particularly by a specially constructed 2D small‐angle X‐ray scattering setup. It is found that the main benefit from the polymers is the formation of an ordered mesostructure under the drastic conditions of using molecular Sn precursors (SnCl4), taking advantage of the large segregation strength of these amphiphiles. Furthermore, it is found that the crystallization mechanism is different from other mesostructured metal oxides such as TiO2. In the case of SnO2, a significant degree of crystallization (induced by heat treatment) already starts at quite low temperatures, 250–300 °C. Therefore, this study provides a better understanding of the general parameters governing the preparation of mesoporous metal oxides films with crystalline pore walls.  相似文献   

10.
Among the mesoporous silica micellar templated structures (MTSs), MSU‐X silica, obtained through an N0I0 assembly between non‐ionic polyethyleneoxide‐based surfactants (N0) and silica neutral inorganic precursors (I0), exhibits a regular ordered structure with a 3D wormhole porous framework and an easily controlled pore size. These materials have been tested for applications requiring both a narrow mesopore size distribution and isotropic properties. A specific double‐step synthesis that we developed recently for MSU‐X materials has allowed us to prepare mesoporous silica particles with the required shape, size, and properties. Both the particles’ synthesis and comparative HPLC separation tests with a commercial ungrafted silica HPLC powder of identical shape and size are reported.  相似文献   

11.
A new class of bifunctional periodic mesoporous organosilicas (PMOs) composed of organosilicate building blocks with two different silicon sites have been synthesized from the single‐source bifunctional organosilica precursors tris(triethoxysilylethyl)ethoxysilane and bis(triethoxysilylethyl)diethoxysilane, respectively denoted MT3‐PMO and DT2‐PMO. The synthesis of these PMOs is achieved by the co‐assembly of a triblock‐copolymer Pluronic P123 template with the bifunctional organosilica precursor under acid‐catalyzed and inorganic‐salt‐assisted conditions. After template removal through solvent extraction, the MT3‐PMO and DT2‐PMO so obtained show well‐ordered mesopores and display large pore diameters (6–7 nm) and pore volumes (0.6–0.8 cm3 g–1) with a narrow pore‐size distribution and high surface areas (700–800 m3 g–1).  相似文献   

12.
13.
A general solvent‐free assembly approach via directly heating amino acid and mesoporous silica mixtures is developed for the synthesis of a family of highly nitrogen‐doped mesoporous carbons. Amino acids have been used as the sole precursors for templating synthesis of a series of ordered mesoporous carbons. During heating, amino acids are melted and strongly interact with silica, leading to effective loading and improved carbon yields (up to ≈25 wt%), thus to successful structure replication and nitrogen‐doping. Unique solvent‐free structure assembly mechanisms are proposed and elucidated semi‐quantitatively by using two affinity scales. Significantly high nitrogen‐doping levels are achieved, up to 9.4 (16.0) wt% via carbonization at 900 (700) °C. The diverse types of amino acids, their variable interactions with silica and different pyrolytic behaviors lead to nitrogen‐doped mesoporous carbons with tunable surface areas (700–1400 m2 g?1), pore volumes (0.9–2.5 cm3 g?1), pore sizes (4.3–10 nm), and particle sizes from a single template. As demonstrations, the typical nitrogen‐doped carbons show good performance in CO2 capture with high CO2/N2 selectivities up to ≈48. Moreover, they show attractive performance for oxygen reduction reaction, with an onset and a half‐wave potential of ≈?0.06 and ?0.14 V (vs Ag/AgCl).  相似文献   

14.
Periodic mesoporous organosilica (PMO) thin films have been produced using an evaporation‐induced self‐assembly (EISA) spin‐coating procedure and a cationic surfactant template. The precursors are silsesquioxanes of the type (C2H5O)3Si–R–Si(OC2H5)3 or R′–[Si(OC2H5)3]3 with R = methene (–CH2–), ethylene (–C2H2–), ethene (–C2H4–), 1,4‐phenylene (C6H4), and R′ = 1,3,5‐phenylene (C6H3). The surfactant is successfully removed by solvent extraction or calcination without any significant Si–C bond cleavage of the organic bridging groups R and R′ within the channel walls. The materials have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD), and 29Si and 13C magic‐angle spinning (MAS) NMR spectroscopy. The d‐spacing of the PMOs is found to be a function of R. Nanoindentation measurements reveal increased mechanical strength and stiffness for the PMOs with R = CH2 and C2H4 compared to silica. Films with different organic‐group content have been prepared using mixtures of silsesquioxane and tetramethylorthosilicate (TMOS) precursors. The dielectric constant (k) is found to decrease with organic content, and values as low as 1.8 have been measured for films thermally treated to cause a “self‐hydrophobizing” bridging‐to‐terminal transformation of the methene to methyl groups with concomitant loss of silanols. Increasing the organic content and thermal treatment also increases the resistance to moisture adsorption in 60 and 80 %‐relative‐humidity (RH) environments. Methene PMO films treated at 500 °C are found to be practically unchanged after five days exposure to 80 % RH. These low dielectric constants, plus the good thermal and mechanical stability and the hydrophobicity suggest the potential utility of these films as low‐k layers in microelectronics.  相似文献   

15.
An ordered mesoporous tungsten‐oxide/carbon (denoted as m‐WO3?x‐C‐s) nanocomposite is synthesized using a simple one‐pot method using polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as a structure‐directing agent. The hydrophilic PEO block interacts with the carbon and tungsten precursors (resol polymer and WCl6), and the PS block is converted to pores after heating at 700 °C under a nitrogen flow. The m‐WO3?x‐C‐s nanocomposite has a high Brunauer–Emmett–Teller (BET) surface area and hexagonally ordered pores. Because of its mesoporous structure and high intrinsic density of tungsten oxide, this material exhibits a high average volumetric capacitance and gravimetric capacitance as a pseudocapacitor electrode. In comparison with reduced mesoporous tungsten oxide (denoted as m‐WO3?x‐h), which is synthesized by a tedious hard template approach and further reduction in a H2/N2 atmosphere, m‐WO3?x‐C‐s shows a high capacitance and enhanced rate performance, as confirmed by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The good performance of m‐WO3?x‐C‐s is attributed to the high surface area arising from the mesoporous structure, the large interconnected mesopores, and the low internal resistance from the well‐dispersed reduced tungsten oxide and amorphous carbon composite structure. Here, the amorphous carbon acts as an electrical pathway for effective pseudocapacitor behavior of WO3‐x.  相似文献   

16.
New synthetic strategies are needed for the assembly of porous metal titanates and metal chalcogenite‐titania thin films for various energy applications. Here, a new synthetic approach is introduced in which two solvents and two surfactants are used. Both surfactants are necessary to accommodate the desired amount of salt species in the hydrophilic domains of the mesophase. The process is called a molten‐salt‐assisted self‐assembly (MASA) because the salt species are in the molten phase and act as a solvent to assemble the ingredients into a mesostructure and they react with titania to form mesoporous metal titanates during the annealing step. The mesoporous metal titanate (meso‐Zn2TiO4 and meso‐CdTiO3) thin films are reacted under H2S or H2Se gas at room temperature to yield high quality transparent mesoporous metal chalcogenides. The H2Se reaction produces rutile and brookite titania phases together with nanocrystalline metal selenides and H2S reaction of meso‐CdTiO3 yields nanocrystalline anatase and CdS in the spatially confined pore walls. Two different metal salts (zinc nitrate hexahydrate and cadmium nitrate tetrahydrate) are tested to demonstrate the generality of the new assembly process. The meso‐TiO2‐CdSe film shows photoactivity under sunlight.  相似文献   

17.
A mesostructured spinel Li4Ti5O12 (LTO)‐carbon nanocomposite (denoted as Meso‐LTO‐C) with large (>15 nm) and uniform pores is simply synthesized via block copolymer self‐assembly. Exceptionally high rate capability is then demonstrated for Li‐ion battery (LIB) negative electrodes. Polyisoprene‐block‐poly(ethylene oxide) (PI‐b‐PEO) with a sp2‐hybridized carbon‐containing hydrophobic block is employed as a structure‐directing agent. Then the assembled composite material is crystallized at 700 °C enabling conversion to the spinel LTO structure without loss of structural integrity. Part of the PI is converted to a conductive carbon that coats the pores of the Meso‐LTO‐C. The in situ pyrolyzed carbon not only maintains the porous mesostructure as the LTO is crystallized, but also improves the electronic conductivity. A Meso‐LTO‐C/Li cell then cycles stably at 10 C‐rate, corresponding to only 6 min for complete charge and discharge, with a reversible capacity of 115 mA h g?1 with 90% capacity retention after 500 cycles. In sharp contrast, a Bulk‐LTO/Li cell exhibits only 69 mA h g?1 at 10 C‐rate. Electrochemical impedance spectroscopy (EIS) with symmetric LTO/LTO cells prepared from Bulk‐LTO and Meso‐LTO‐C cycled in different potential ranges reveals the factors contributing to the vast difference between the rate‐capabilities. The carbon‐coated mesoporous structure enables highly improved electronic conductivity and significantly reduced charge transfer resistance, and a much smaller overall resistance is observed compared to Bulk‐LTO. Also, the solid electrolyte interphase (SEI)‐free surface due to the limited voltage window (>1 V versus Li/Li+) contributes to dramatically reduced resistance.  相似文献   

18.
Solid‐state grinding is a simple and effective method to include guest species into the channels of ordered mesoporous materials with a different degree of filling. After calcination, a monolayer or several monolayers of guest species can not only form highly dispersed oxide species and other surface species on the hosts whether the template is occluded in the channels or not, but the guest species can also fill the mesoporous channels in the host and thus lead to nanowires or nanoarrays. Solid‐state salt inclusion is faster and more convenient than other inclusion routes. The absence of a solvent not only saves the time otherwise needed for evaporation but also leads to a higher degree of filling through a simple inclusion step as the void space in the pores is not occupied by the solvent. Also, the lack of competitive adsorption of solvent molecules enhances the interaction between the guest species included and the silica wall, which facilitates the high dispersion of oxide species. However, host–guest interactions that are too strong may disturb the self‐crystallization of guest species in the mesopores leading to imperfect nanocasting of the mesostructure.  相似文献   

19.
In this paper, we report on Li storage in hierarchically porous carbon monoliths with a relatively higher graphite‐like ordered carbon structure. Macroscopic carbon monoliths with both mesopores and macropores were successfully prepared by using meso‐/macroporous silica as a template and using mesophase pitch as a precursor. Owing to the high porosity (providing ionic transport channels) and high electronic conductivity (ca. 0.1 S cm–1), this porous carbon monolith with a mixed conducting 3D network shows a superior high‐rate performance if used as anode material in electrochemical lithium cells. A challenge for future research as to its applicability in batteries is the lowering of the irreversible capacity.  相似文献   

20.
Order mesoporous carbon spheres (O‐MCS) have wide applications in catalysis, absorption, and energy storage/conversion due to their ordered mesoporous channels, large surface areas, and quantum effects in the nanoscale. However, realizing a precise control of large mesoporous size still remains a big challenge. Herein, an encapsulated self‐activation strategy to prepare highly ordered mesoporous carbon spheres with precise tunable large pore sizes is first reported. The large mesopore size is achieved by encapsulating mesoporous polymer sphere in compact silica shell for pyrolysis process. Moreover, the self‐activation mechanism endows the O‐MCS high surface area, large mesoporous size, and pore volume. In addition, simply increasing the amount of silica precursor will enlarge the pore sizes of O‐MCS from 3.1 to 10.0 nm with increased specific surface area from 696 to 1186 m2 g?1. The large order mesoporous structure of O‐MCS, which can facilitate diffusion of guest molecules in the channels exhibit great advantage in the adsorption and electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号