首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Over two decades after carbon nanotubes started to attract interest for their seemingly huge prospects, their electrical properties are far from being used to the maximum potential. Composite materials based on carbon nanotubes still have conductivities several orders of magnitude below those of the tubes themselves. This study aims at understanding the reason for these limitations and the possibilities to overcome them. Based on and validated by real single‐walled carbon nanotube (SWCNT) networks, a simple model is developed, which can bridge the gap between macroscale and nanoscale down to individual tube–tube contacts. The model is used to calculate the electrical properties of the SWCNT networks, both as‐prepared and impregnated with an epoxy‐amine polymer. The experimental results show that the polymer has a small effect on the large‐scale network resistance. From the model results it is concluded that the main contribution to the conductivity of the network results from direct contacts, and that in their presence tunneling contacts contribute insignificantly to the conductivity. Preparing highly conductive polymer composites is only possible if the number of direct, low‐resistance contacts in the network is sufficiently large and therefore these direct contacts play the key role.  相似文献   

2.
Advances in functionality and reliability of nanocomposite materials require careful formulation of processing methods to ultimately realize the desired properties. An extensive study of how the variation in fabrication process would affect the mechanism of conductivity and thus the final electrical properties of the carbon nanotube–polymer composite is presented. Some of the most widely implemented procedures are addressed, such as ultrasonication, melt shear mixing, and addition of surfactants. It is hoped that this study could provide a systematic guide to selecting and designing the downstream processing of carbon nanocomposites. Finally, this guide is used to demonstrate the fabrication and performance of a stretchable (pliable) conductor that can reversibly undergo uniaxial strain of over 100%, and other key applications are discussed.  相似文献   

3.
The temperature coefficient of resistance of a carbon nanotube nanocomposite with the non‐conductive phase‐change hydrogel Poly(N‐isopropylacrylamide) is studied. This nanocomposite is found to achieve the largest reported temperature coefficient of resistance, ≈?10%/°C, observed in carbon nanotube‐polymer nanocomposites to date. The giant temperature coefficients of resistance results from a volume‐phase‐transition that is induced by the humidity present in the surrounding atmosphere and that enhances the temperature dependence of the resistivity via direct changes in the tunneling resistance that electrons experience in moving between nearby carbon nanotubes. The bolometric photoresponses of this new material are also studied. The nanocomposite's enhanced responses to temperature and humidity give it great potential for sensor applications and uncooled infrared detection.  相似文献   

4.
The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo‐lithographically defined CNT pillars that are conformally coated with amorphous silicon carbide (a‐SiC) to strengthen the interlocking of individual CNTs at junctions using low pressure chemical vapor deposition (LPCVD). We further quantify the mechanical response by performing flat‐punch nanoindentation measurements on coated CNT pillars with various high‐aspect‐ratios. We discovered new mechanical failure modes of coated CNT pillars, such as “bamboo” and brittle‐like composite rupture as coating thickness increases. Furthermore, a significant increase in strength and modulus is achieved. For CNT pillars with high aspect ratio (1:10) and coating thickness of 21.4 nm, the compressive strength increases by an order of magnitude of 3, towards 1.8 GPa (from below 1 MPa for uncoated CNT pillars) and the elastic modulus increases towards 125 GPa. These results show that our coated CNT pillars, which can serve as vertical interconnects and 3D super‐capacitors, can be transformed into robust high‐aspect‐ratio 3D‐micro architectures with semiconductor device compatible processes.  相似文献   

5.
The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G‐CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat extraction. Through computer simulations, it is demonstrated that the G‐CNT outperforms few‐layer graphene by more than 2 orders of magnitude for the c‐axis heat transfer, while its thermal resistance is 3 orders of magnitude lower than the state‐of‐the‐art TIMs. We show that heat can be removed from the G‐CNT by immersing it in a liquid. The heat transfer characteristics of G‐CNT suggest that it has the potential to revolutionize the design of high‐performance TIMs.  相似文献   

6.
The development of advanced dielectric materials with high electric energy densities is of crucial importance in modern electronics and electric power systems. Here, a new class of multilayer‐structured polymer nanocomposites with high energy and power densities is presented. The outer layers of the trilayered structure are composed of boron nitride nanosheets dispersed in poly(vinylidene fluoride) (PVDF) matrix to provide high breakdown strength, while PVDF with barium strontium titanate nanowires forms the central layer to offer high dielectric constant of the resulting composites. The influence of the filler contents on the electrical polarization, breakdown strength, and energy density is examined. Simulations are carried out to model the electrical tree formation in the layered nanocomposites and to verify the experimental breakdown results. The trilayered polymer nanocomposite with an optimized filler content displays a discharged energy density of 20.5 J cm?3 at Weibull breakdown strength of 588 MV m?1, which is among the highest discharged energy densities reported so far. Moreover, the nanocomposite exhibits a superior power density of 0.91 MW cm?3, more than nine times that of the commercially available biaxially oriented polypropylene. The findings of this research provide a new design paradigm for high‐performance dielectric polymer nanocomposites.  相似文献   

7.
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐ phenylenevinylene], i.e., MEH‐PPV) with remarkable regularity over large areas were produced by controlled “stick‐slip” motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere‐on‐flat geometry). Subsequently, MEH‐PPV rings were exploited as a template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self‐assembly processes, namely, evaporation‐induced self‐assembly of polymers in a sphere‐on‐flat geometry, followed by subsequent directed self‐assembly of MWNTs on the polymer‐templated surfaces.  相似文献   

8.
A critical challenge in nanocomposite fabrication by adding SWCNTs as reinforcement is to realize an effective transfer of the excellent mechanical properties of the SWCNTs to the macroscale mechanical properties of the matrix. Using directly grown SWCNT films with continuous reticulate structure as the template, Cu/SWCNTs/Cu laminated nanocomposites are fabricated by an electrodepositing process. The resulting Cu/SWCNTs/Cu laminated nanocomposites exhibit extremely high strength and Young's modulus. The estimated Young's modulus of the SWCNT bundles in the composite are between 860 and 960 GPa. Such a high strength and an effective load‐transfer capacity are ascribed to the unique continuous reticulate architecture of SWCNT films and the strong interfacial strength between the SWCNTs and Cu matrix. Raman spectroscopy is used to characterize the loading status of the SWCNTs in the strained composite. It provides a route to investigate the load transfer of SWCNTs in the metal matrix composites.  相似文献   

9.
A novel approach to chemically functionalize multiwalled carbon nanotubes (MWCNTs) for making advanced polymeric nanocomposites with liquid crystalline polymers (LCPs) is presented. In this approach, two types of chemical moieties (i.e., carboxylic and hydroxyl benzoic acid groups) are selectively introduced onto the sidewalls of the MWCNTs. Fourier transform IR and Raman spectroscopy are used to examine the interaction between the functionalized MWCNTs and the LCP. The strong interaction between the functionalized MWCNTs and the LCP greatly improved the dispersion of MWCNTs in the polymer matrix as well as the interfacial adhesion. The dispersion of the MWCNTs in the LCP matrix is observed by optical microscopy and field‐emission scanning electron microscopy. As a result, the addition of 1 wt% MWCNTs in the LCP resulted in the significant improvement (41 and 55%) in the tensile strength and modulus of the LCP.  相似文献   

10.
A general method is described to prepare high‐performance conductive polymer fibers or tapes. In this method, bicomponent tapes/fibers containing two layers of conductive polymer composites (CPCs) filled with multiwall carbon nanotubes (MWNT) or carbon black (CB) based on a lower‐melting‐temperature polymer and an unfilled polymer core with higher melting temperature are fabricated by a melt‐based process. Morphological control of the conductive network formed by nanofillers is realized by solid‐state drawing and annealing. Information on the morphological and electrical change of the highly oriented conductive nanofiller network in CPC bicomponent tapes during relaxation, melting, and crystallization of the polymer matrix is reported for the first time. The conductivity of these polypropylene tapes can be as high as 275 S m?1 with tensile strengths of around 500 MPa. To the best of the authors' knowledge, it is the most conductive, high‐strength polymer fiber produced by melt‐processing reported in literature, despite the fact that only ~5 wt.% of MWNTs are used in the outer layers of the tape and the overall MWNT content in the bicomponent tape can be much lower (typically ~0.5 wt.%). Their applications could include sensing, smart textiles, electrodes for flexible solar cells, and electromagnetic interference (EMI) shielding. Furthermore, a modeling approach was used to study the relaxation process of highly oriented conductive networks formed by carbon nanofillers.  相似文献   

11.
Highly ordered, homogeneous polymer nanocomposites of layered graphene oxide are prepared using a vacuum‐assisted self‐assembly (VASA) technique. In VASA, all components (nanofiller and polymer) are pre‐mixed prior to assembly under a flow, making it compatible with either hydrophilic poly(vinyl alcohol) (PVA) or hydrophobic poly(methyl methacrylate) (PMMA) for the preparation of composites with over 50 wt% filler. This process is complimentary to layer‐by‐layer assembly, where the assembling components are required to interact strongly (e.g., via Coulombic attraction). The nanosheets within the VASA‐assembled composites exhibit a high degree of order with tunable intersheet spacing, depending on the polymer content. Graphene oxide–PVA nanocomposites, prepared from water, exhibit greatly improved modulus values in comparison to films of either pure PVA or pure graphene oxide. Modulus values for graphene oxide–PMMA nanocomposites, prepared from dimethylformamide, are intermediate to those of the pure components. The differences in structure, modulus, and strength can be attributed to the gallery composition, specifically the hydrogen bonding ability of the intercalating species  相似文献   

12.
We have investigated the key factors determining the performance of supercapacitors constructed using single‐walled carbon nanotube (SWNT) electrodes. Several parameters, such as composition of the binder, annealing temperature, type of current collector, charging time, and discharging current density have been optimized for the best performance of the supercapacitor with respect to energy density and power density. We find a maximum specific capacitance of 180 F/g and a measured power density of 20 kW/kg at energy densities in the range from 7 to 6.5 Wh/kg at 0.9 V in a solution of 7.5 N KOH (the currently available supercapacitors have energy densities in the range 6–7 Wh/kg and power density in the range 0.2–5 kW/kg at 2.3 V in non‐aqueous solvents).  相似文献   

13.
Over the next few years, it is expected that new, energetic, multifunctional materials will be engineered. There is a need for new methods to assemble such materials from manufactured nanopowders. In this article, we demonstrate a DNA‐directed assembly procedure to produce highly energetic nanocomposites by assembling Al and CuO nanoparticles into micrometer‐sized particles of an Al/CuO nanocomposite, which has exquisite energetic performance in comparison with its physically mixed Al/CuO counterparts. Using 80 nm Al nanoparticles, the heat of reaction and the onset temperature are 1.8 kJ g?1 and 410 °C, respectively. This experimental achievement relies on the development of simple and reliable protocols to disperse and sort metallic and metal oxide nanopowders in aqueous solution and the establishment of specific DNA surface‐modification processes for Al and CuO nanoparticles. Overall, our work, which shows that DNA can be used as a structural material to assemble Al/Al, CuO/CuO and Al/CuO composite materials, opens a route for molecular engineering of the material on the nanoscale.  相似文献   

14.
15.
Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (~60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm?1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed.  相似文献   

16.
Transparent and stretchable conductors are essential components in many stretchable electronics. However, it is still a challenge to make this kind of conductor easily and cost‐effectively. Here, a way to utilize cross‐stacked superaligned carbon nanotube films to make transparent and stretchable conductors is reported. The as‐produced cross‐stacked films are isotropic in electrical conductivity, but anisotropic in mechanical properties, because of their microscale cross structures. Along some directions, the films can sustain a high strain, of more than 35%, which is helpful for applications as stretchable conductors. These cross‐stacked films can be further made into composite films with polyvinyl alcohol by a dip‐coating method, and with polydimethylsiloxane by an embedding method. The former composite films have similar isotropic electrical and anisotropic mechanical properties to SACNT films, but much larger capability in terms of tensile load. The latter composite films possess quite highly stretchable and reversible electrical behaviors, which can be used in stretchable touch panels, solar cells, strain sensors, and implanted conductors.  相似文献   

17.
Light‐weight and high‐performance electromagnetic interference (EMI)‐shielding epoxy nanocomposites are prepared by an infiltration method using a 3D carbon nanotube (CNT) sponge as the 3D reinforcement and conducting framework. The preformed, highly porous, and electrically conducting framework acts as a highway for electron transport and can resist a high external loading to protect the epoxy nanocomposite. Consequently, a remarkable conductivity of 148 S m?1 and an outstanding EMI shielding effectiveness of around 33 dB in the X‐band are achieved for the epoxy nanocomposite with 0.66 wt% of CNT sponge, which is higher than that achieved for epoxy nanocomposites with 20 wt% of conventional CNTs. More importantly, the CNT sponge provides a dual advantage over conventional CNTs in its prominent reinforcement and toughening of the epoxy composite. Only 0.66 wt% of CNT sponge significantly increases the flexural and tensile strengths by 102% and 64%, respectively, as compared to those of neat epoxy. Moreover, the nanocomposite shows a 250% increase in tensile toughness and a 97% increase in elongation at break. These results indicate that CNT sponge is an ideal functional component for mechanically strong and high‐performance EMI‐shielding nanocomposites.  相似文献   

18.
The current‐carrying capacity (CCC), or ampacity, of highly‐conductive, light, and strong carbon nanotube (CNT) fibers is characterized by measuring their failure current density (FCD) and continuous current rating (CCR) values. It is shown, both experimentally and theoretically, that the CCC of these fibers is determined by the balance between current‐induced Joule heating and heat exchange with the surroundings. The measured FCD values of the fibers range from 107 to 109 A m?2 and are generally higher than the previously reported values for aligned buckypapers, carbon fibers, and CNT fibers. To the authors’ knowledge, this is the first time the CCR for a CNT fiber has been reported. The specific CCC value (i.e., normalized by the linear mass density) of these CNT fibers are demonstrated to be higher than those of copper.  相似文献   

19.
20.
The scarcity of oil resources is going to become one of the main factors threatening the stability of the global economy. To avoid an energy crisis in the future, it is essential to increase oil extraction in much deeper wells, experiencing higher temperatures and pressures. Exploring these deeper areas will demand novel and robust materials. Rubber sealants, or O‐rings, are especially key components in enabling the probing and production of oil in deeper wells, so that higher temperature and pressure reservoirs are reached. In this account, it is demonstrated that carbon nanotubes homogeneously and randomly dispersed in rubber matrices, are able to generate durable sealants that operate satisfactorily at extremely high temperatures and pressures (e.g., 260 °C and 239 MPa). The key issues in these novel composites are: i) the nanotube surface‐control and reactivity, ii) the used of multi‐walled carbon nanotubes (MWNTs)‐embedded in fluorinated rubber, and iii) the formation of a cellulation structure. This rubber nanocomposite with a cellulation structure and having extreme performance leads to a balanced pressure resistance, sealing ability, thermal resistance, and durability, which can contribute to doubling the current average global oil recovery efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号