首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cover shows an organic light‐emitting diode with remote metallic cathode, reported by Sarah Schols and co‐workers on p. 136. The metallic cathode is displaced from the light‐emission zone by one to several micrometers. The injected electrons accumulate at an organic heterojunction and are transported to the light‐emission zone by field‐effect. The achieved charge‐carrier mobility and in combination with reduced optical absorption losses because of the remoteness of the cathode may lead to applications as waveguide OLEDs and possibly a laser structure. (The result was obtained in the EU‐funded project “OLAS” IST‐ FP6‐015034.) We describe an organic light‐emitting diode (OLED) using field‐effect to transport electrons. The device is a hybrid between a diode and a field‐effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light‐emitting zone. This micrometer‐sized distance can be bridged by electrons with enhanced field‐effect mobility. The device is fabricated using poly(triarylamine) (PTAA) as the hole‐transport material, tris(8‐hydroxyquinoline) aluminum (Alq3) doped with 4‐(dicyanomethylene)‐2‐methyl‐6‐(julolindin‐4‐yl‐vinyl)‐4H‐pyran (DCM2) as the active light‐emitting layer, and N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13H27), as the electron‐transport material. The obtained external quantum efficiencies are as high as for conventional OLEDs comprising the same materials. The quantum efficiencies of the new devices are remarkably independent of the current, up to current densities of more than 10 A cm–2. In addition, the absence of a metallic cathode covering the light‐emission zone permits top‐emission and could reduce optical absorption losses in waveguide structures. These properties may be useful in the future for the fabrication of solid‐state high‐brightness organic light sources.  相似文献   

2.
An approach to produce organic light‐emitting transistors (OLETs) containing a laterally arranged heterojunction structure, which minimizes exciton quenching at the metal electrodes, is described. This device configuration provides an organic light‐emitting diode (OLED) structure where the anode (source) electrode, hole‐transport material (field‐effect material), light‐emitting material, and cathode (drain) electrode are laterally arranged, thus offering a chance to control the electroluminescent intensity by changing the gate bias. Pentacene and tris(8‐quinolinolato)aluminum (Alq3) are employed as the field‐effect and light‐emitting materials, respectively. The laterally arranged heterojunction structures are achieved by successively inclined deposition of the field‐effect and light‐emitting materials. After deposition of pentacene, a narrow gap of about 10–20 nm between the drain electrode and pentacene was obtained, thereby creating an opportunity to fabricate a laterally arranged heterojunction. In the OLETs, unsymmetrical source and drain electrodes, that is, Au and LiF/Al ones, are used to ensure efficient injection of holes and electrons. Visible‐light emission from OLETs is observed under ambient atmosphere. This result is ascribed to efficient carrier injection and transport, formation of a heterojunction, as well as good luminescence from the organic emissive layer. The device structure serves as an excellent model system for OLETs and demonstrates a general concept of adjusting the charge‐carrier injection and transport, as well as the electroluminescent properties, by forming laterally arranged heterojunctions.  相似文献   

3.
By doping 2,7‐bis[4‐(N‐carbazole)phenylvinyl]‐9,9′‐spirobifluorene (spiro‐SBCz) into a wide energy gap 4,4′‐bis(9‐carbazole)‐2,2′‐biphenyl (CBP) host, we demonstrate an extremely low ASE threshold of Eth = (0.11 ± 0.05) μJ cm–2 (220 W cm–2) which is the lowest ASE threshold ever reported. In addition, we confirmed that the spiro‐SBCz thin film functions as an active light emitting layer in organic light‐emitting diode (OLED) and a field‐effect transistor (FET). In particular, we succeeded to obtain linear electroluminescence in the FET structure which will be useful for future organic laser diodes.  相似文献   

4.
A new organic blue‐light emitter 1‐methyl‐2‐(anthryl)‐imidazo[4,5‐f][1,10]‐phenanthroline ( 1 ) has been synthesized and fully characterized. The utility of compound 1 as a blue‐light emitter in electroluminescent (EL) devices has been evaluated by fabricating a series of EL devices A where compound 1 functions as an emitter. The EL spectrum of device series A has the emission maximum at 481 nm with the CIE (Commission Internationale de l'Eclairage) color coordinates 0.198 and 0.284. The maximum luminance of devices in series A is 4000 cd m–2 and the best external quantum efficiency of device series A is 1.82 %. The utility of compound 1 as an electron injection–electron transport material has been evaluated by constructing a set of EL devices B where 1 is used as either the electron‐injection layer or the electron injection–electron transport layer. The performance of device series B is compared to the standard device in which Alq3 (tris(8‐hydroxyquinoline) aluminum) is used as the electron injection–electron transport layer. The experimental results show that the performance of 1 as an electron injection–electron transport material is considerably better than Alq3. The stability of device series B is comparable to that of the standard Alq3 device. The excellent performance of 1 as an electron injection/transport material may be attributed to the strong intermolecular interactions of 1 in the solid state as revealed by single‐crystal X‐ray diffraction analysis. In addition, compound 1 is a colorless material with a much larger highest occupied molecular orbital–lowest unoccupied molecular (HOMO–LUMO) gap than Alq3, which renders it potentially useful for a wide range of applications in EL devices.  相似文献   

5.
We demonstrate a novel organic light‐emitting diode (LED) heterolayer structure that contains a conjugated dendrimer as the light‐emitting molecule. The LED was prepared by spin‐coating two dendrimer layers from the same solvent. The device consists of a graded bilayer structure formed from a neat dendrimer film covered with a film consisting of the same dendrimer but doped with the electron‐transporting material 2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD). In this device, the heterojunction interface present in conventional bilayer organic light‐emitting diodes is eliminated, and is replaced by a graded interlayer. By optimizing the concentration of PBD in the dendrimer, a peak electroluminescence (EL) external quantum efficiency of 0.16 % at 600 cd m–2 was obtained. The EL quantum efficiency is significantly enhanced in comparison with devices based on a single layer, a conventional bilayer, and a single‐layer doped with PBD. The EL quantum efficiency is a factor of eight larger than that of a conventional bilayer LED made with the conjugated dendrimer as the emissive layer and poly(methylmethacrylate) (PMMA) doped with PBD as the electron‐transporting layer. The best blended device exhibited only one third of the efficiency of the graded device. The improvement in the operating characteristics of the graded device is attributed to the efficient device structure, in which exciton formation is improved by a graded doping profile of electron‐ and hole‐transporting components.  相似文献   

6.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

7.
The degradation mechanisms of phosphorescent organic light‐emitting devices (PhOLEDs) are studied. The results show that PhOLED degradation is closely linked to interactions between excitons and positive polarons in the host material of the emitter layer (EML), which lead to its aggregation near the EML/electron transport layer (ETL) interface. This exciton–polaron‐induced aggregation (EPIA) is associated with the emergence of new emission bands at longer wavelengths in the electroluminescence spectra of these materials, which can be detected after prolonged device operation. Such EPIA processes are found to occur in a variety of wide‐bandgap materials commonly used as hosts in PhOLEDs and are correlated with device degradation. Quite notably, the extent of EPIA appears to correlate with the material's bandgap rather than with the glass‐transition temperature. The findings uncover a new degradation mechanism, caused by polaron‐exciton interactions, that appears to be behind the lower stability of OLEDs utilizing wide‐bandgap materials in general. The same degradation mechanism can be expected to be present in other organic optoelectronic devices.  相似文献   

8.
A high efficiency soluble green phosphorescent organic light-emitting diode (PHOLED) was developed using a double layer emitting structure fabricated by a stamp transfer printing process. One green emitting layer with a hole transport type host material was coated on a hole transport layer and the other green emitting layer with an electron transport type host material was stamp transfer printed on the green emitting layer. The efficiency of solution processed green PHOLEDs was more than quadrupled using the double layer emitting structure fabricated by the stamp transfer printing method.  相似文献   

9.
We investigated the light‐emitting performances of blue phosphorescent organic light‐emitting diodes, known as PHOLEDs, by incorporating an N,N’‐dicarbazolyl‐3,5‐benzen interlayer between the hole transporting layer and emitting layer (EML). We found that the effects of the introduced interlayer for triplet exciton confinement and hole/electron balance in the EML were exceptionally dependent on the host materials: 9‐(4‐tert‐butylphenyl)‐3.6‐bis(triphenylsilyl)‐9H‐carbazole, 9‐(4‐tert‐butylphenyl)‐3.6‐ditrityl‐9H‐carbazole, and 4,4’‐bis‐triphenylsilanyl‐biphenyl. When an appropriate interlayer and host material were combined, the peak external quantum efficiency was greatly enhanced by over 21 times from 0.79% to 17.1%. Studies on the recombination zone using a series of host materials were also conducted.  相似文献   

10.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

11.
High‐performance, green, orange, and red top‐emitting organic light‐emitting diodes (TOLEDs) with p–i–n homojunction are demonstrated. An excellent ambipolar host, 2,5‐bis(2‐(9H‐carbazol‐9‐yl)phenyl)‐1,3,4‐oxadiazole (o‐CzOXD), which has good thermal and morphological stabilities, a high triplet energy level, and equally high electron and hole mobilities, is chosen as the organic host material for the homojunction devices. By electrical doping, the carrier injection and transporting characteristics are greatly improved. The optical structure is optimized in view of light emission of different colors to enhance the color purity and improve the view characte­ristics. As a result, high efficiency p–i–n homojunction TOLEDs with saturated intrinsic emission of the emitting materials and angular independence of the emission are realized. The performances of these p–i–n homojunction TOLEDs are even higher than the multi‐layer heterojunction bottom‐emitting devices using the same emitting layers.  相似文献   

12.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

13.
The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.  相似文献   

14.
Based on the results of first‐principles calculations of the electronic properties of blue light‐emitting materials, the molecular structures of oligofluorenes are optimized by incorporating electron‐withdrawing groups into the molecules to balance hole and electron injection and transport for organic light‐emitting diodes (OLEDs). The result is a remarkable improvement in the maximum external quantum efficiency (EQE) of the undoped device from 2.0% to 4.99%. Further optimization of the device configurations and processing procedures, e.g., by changing the thickness of the emitting layer and through thermal annealing treatments, leads to a very high maximum EQE of 7.40% for the undoped sky‐blue device. Finally, by doping the emitter in a suitable host material, 4,4’‐bis(carbazol‐9‐yl)biphenyl (CBP), at the optimal concentration of 6%, pure blue emission with extremely high maximum EQE of 9.40% and Commission Internationale de l’Eclairage (CIE) coordinates of (0.147, 0.139) is achieved.  相似文献   

15.
A highly efficient blue‐light emitter, 2‐tert‐butyl‐9,10‐bis[4′‐(diphenyl‐phosphoryl)phenyl]anthracene (POAn) is synthesized, and comprises electron‐deficient triphenylphosphine oxide side groups appended to the 9‐ and 10‐positions of a 2‐tert‐butylanthracene core. This sophisticated anthracene compound possesses a non‐coplanar configuration that results in a decreased tendency to crystallize and weaker intermolecular interactions in the solid state, leading to its pronounced morphological stability and high quantum efficiency. In addition to serving as an electron‐transporting blue‐light‐emitting material, POAn also facilitates electron injection from the Al cathode to itself. Consequently, simple double‐layer devices incorporating POAn as the emitting, electron‐transporting, and ‐injecting material produce bright deep‐blue lights having Commission Internationale de L'Eclairage coordinates of (0.15,0.07). The peak electroluminescence performance was 4.3% (2.9 cd A?1). For a device lacking an electron‐transport layer or alkali fluoride, this device displays the best performance of any such the deep‐blue organic light‐emitting diodes reported to date.  相似文献   

16.
A series of pyridine‐containing electron‐transport materials are developed as an electron‐transport layer for the FIrpic‐based blue phosphorescent organic light‐emitting diodes. Their energy levels can be tuned by the introduction of pyridine rings in the framework and on the periphery of the molecules. Significantly reduced operating voltage is achieved without compromising external quantum efficiency by solely tuning the nitrogen atom orientations of those pyidine rings. Unprecedented low operating voltages of 2.61 and 3.03 V are realized at 1 and 100 cd m?2, giving ever highest power efficiency values of 65.8 and 59.7 lm W?1, respectively. In addition, the operating voltages at 100 cd m?2 can be further reduced to 2.70 V by using a host material with a small singlet‐triplet exchange energy, and the threshold voltage for electroluminescence can even be 0.2–0.3 V lower than the theoretical minimum value of the photon energy divided by electron charge. Aside from the reduced operating voltage, a further reduced roll‐off in efficiency is also achieved by the combination of an appropriate host material.  相似文献   

17.
2,3,4,5‐Tetraphenylsiloles are excellent solid‐state light emitters featured aggregation‐induced emission (AIE) characteristics, but those that can efficiently function as both light‐emitting and electron‐transporting layers in one organic light‐emitting diode (OLED) are much rare. To address this issue, herein, three tailored n‐type light emitters comprised of 2,3,4,5‐tetraphenylsilole and dimesitylboryl functional groups are designed and synthesized. The new siloles are fully characterized by standard spectroscopic and crystallographic methods with satisfactory results. Their thermal stabilities, electronic structures, photophysical properties, electrochemical behaviors and applications in OLEDs are investigated. These new siloles exhibit AIE characteristics with high emission efficiencies in solid films, and possess lower LUMO energy levels than their parents, 2,3,4,5‐tetraphenylsiloles. The double‐layer OLEDs [ITO/NPB (60 nm)/silole (60 nm)/LiF (1 nm)/Al (100 nm)] fabricated by adopting the new siloles as both light emitter and electron transporter afford excellent performances, with high electroluminescence efficiencies up to 13.9 cd A–1, 4.35% and 11.6 lm W–1, which are increased greatly relative to those attained from the triple‐layer devices with an additional electron‐transporting layer. These results demonstrate effective access to n‐type solid‐state emissive materials with practical utility.  相似文献   

18.
The field‐effect transistor (FET) and diode characteristics of poly(3‐alkylthiophene) (P3AT) nanofiber layers deposited from nanofiber dispersions are presented and compared with those of layers deposited from molecularly dissolved polymer solutions in chlorobenzene. The P3AT n‐alkyl‐side‐chain length was varied from 4 to 9 carbon atoms. The hole mobilities are correlated with the interface and bulk morphology of the layers as determined by UV–vis spectroscopy, transmission electron microscopy (TEM) with selected area electron diffraction (SAED), atomic force microscopy (AFM), and polarized carbon K‐edge near edge X‐ray absorption fine structure (NEXAFS) spectroscopy. The latter technique reveals the average polymer orientation in the accumulation region of the FET at the interface with the SiO2 gate dielectric. The previously observed alkyl‐chain‐length‐dependence of the FET mobility in P3AT films results from differences in molecular ordering and orientation at the dielectric/semiconductor interface, and it is concluded that side‐chain length does not determine the intrinsic mobility of P3ATs, but rather the alkyl chain length of P3ATs influences FET diode mobility only through changes in interfacial bulk ordering in solution processed films.  相似文献   

19.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

20.
Tribotronics is a new field about the devices fabricated using the electrostatic potential created by contact electrification as a “gate” voltage to tune/control charge carrier transport in semiconductors. In this paper, an organic tribotronic transistor is proposed by coupling an organic thin film transistor (OTFT) and a triboelectric nanogenerator (TENG) in vertical contact‐separation mode. Instead of using the traditional gate voltage for controlling, the charge carrier transportation in the OTFT can be modulated by the contact‐induced electrostatic potential of the TENG. By further coupling with an organic light‐emitting diode, a contact‐electrification‐gated light‐emitting diode (CG‐LED) is fabricated, in which the operating current and light‐emission intensity can be tuned/controlled by an external force–induced contact electrification. Two different modes of the CG‐LED have been demonstrated and the brightness can be decreased and increased by the applied physical contact, respectively. Different from the conventional organic light‐emitting transistor controlled by an electrical signal, the CG‐LED has realized the direct interaction between the external environment/stimuli and the electroluminescence device. By introducing optoelectronics into tribotronics, the CG‐LED has open up a new field of tribophototronics with many potential applications in interactive display, mechanical imaging, micro‐opto‐electro‐mechanical systems, and flexible/touch optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号