首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the basic study to develop a fluidized bed combustion boiler which can use low grade anthracite. In this study, the anthracite of about 3400 kcal/kg was burned in the bench scale non-recycling atmospheric fluidized bed combustor of 200mm diameter and 2215mm height with the static bed height of 250mm and the combustion temperature range of 800–950°C. During the combustion, the effect of factors such as the superficial gas velocity in bed, the air ratio, the coal supply location and the coal particle size on the combustion efficiency, the elutriation ratio and the unburned carbon content both in elutriated ash and in drained ash was thoroughly analyzed. When the superficial gas velocity in bed is 0.7~2.2m/s, the air ratio is 1.0~1.6 and coal supply locations are 300,500 and 700mm above the air distributor, the combustion efficiencies range from 66% to 83.5% for the mean coal particle size of 0.209mm, and from 71% to 88% for the case of 0.265mm. The combustion efficiency decreases as the superficial gas velocity in bed and the air ratio increase. The lower the coal supply location is, the better the combustion efficiency becomes in general.  相似文献   

2.
A simplified analytical modeling of single aluminum particle combustion was conducted. Ignition and quasi-steady combustion (QSC) were separately formulated and integrated. Both the heat transfer from the hot ambient gas and the enthalpy of heterogeneous surface reaction (HSR) served to cause the particle ignition. Conservation equations were solved for QSC parameters in conjunction with conserved scalar formulation and Shvab-Zeldovich function. Limit temperature postulate was formulated by a sink term pertinent to the dissociation of the aluminum oxide near the flame zone. Effective latent heat of vaporization was modified for the thermal radiation. Ignition and QSC of the aluminum particle were predicted and discussed with emphasis on the effect of the aluminum oxide and variable properties. The model was validated with the experiments regarding ignition delay time, burning rate, residue particle size, flame temperature, QSC duration, and stand-off distance of the envelop flame. Agreement was satisfactory and the prediction errors were limited within 10%.  相似文献   

3.

Coal is an important energy source to increase consumption continuously. However, the ash residues from coal combustion have produced ash deposition that causes slagging and fouling in boilers. The goal of this study is to examine the characteristics of ash deposits (i.e., the effects of the ash fraction and particle size) in pulverized coal combustion. For this study, five coals (Suek, Macqurie, Berau, Lanna and Vitol) are used, which have similar chemical components in the ash but differences in the ash fraction. A Thermomechanical analysis technique (TMA) and Drop tube furnace (DTF) are used to analyze the tendencies in the ash fusibility and deposition with temperature, respectively. Moreover, the size and morphology of the fly ash are analyzed for physical changes by using a particle-sizedistribution analyzer and Scanning electron microscopy (SEM), respectively. In the TMA results, all coal types have a similar fusibility because of the similar chemical components in the ash. The order of the deposited mass is Suek, Macqurie, Berau, Vitol and Lanna in accordance with the ash fraction in the DTF. The ash fraction in coal is a major factor in the ash deposit according to these results. The size of the fly ash changed compared to that of the raw coal according to the results of a particle-size analysis and SEM owing to physical processes such as fragmentation, shedding and coalescence during coal burning. On this basis, a deposition model is developed with the ash fraction and particle size. The model results are in good agreement with the measurements. The results demonstrate that the particle size and ash fraction influence the deposit.

  相似文献   

4.
Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.  相似文献   

5.
四角切圆锅炉炉内煤粉燃烧过程数值模拟   总被引:7,自引:0,他引:7  
利用计算流体动力学软件PHOENICS 3.5对一台200 MW四角切圆水平浓淡燃烧煤粉炉进行数值模拟研究,采用多流体两相流动模型及煤粉燃烧综合模型,计算得出在垂直方向不同二次风风量分布的工况下,炉内各截面处的烟气温度、燃料浓度、燃烧产物组分浓度以及炉内辐射热流的分布。结果表明,在燃烧器出口处出现了高煤粉浓度和烟气高温区,并出现气固两相分离的现象,使得煤粉着火及时,燃烧器区域维持较高温度,并防止水冷壁结渣,炉内温度、炉膛出口氧量和飞灰可燃物的计算结果和试验结果相比,吻合较好。二次风分级配风工况下,下部燃烧器区烟气温度升高,但氧气推迟混入,相应位置飞灰可燃物有所增加。计算模型能够合理地模拟水平浓淡煤粉气流在大型锅炉炉膛内的燃烧过程,适用于运行工况的优化和炉内污染物的控制。  相似文献   

6.
针对电子耦合器件(CCD)辐射测温中因温度过高导致的辐射图像“发白”问题,提出了摄像机快门时间控制模型,该模型能有效地防止CCD光敏面输出过饱和电流。在此基础上,引入计算机断层图像检测理论,对燃烧火焰不同聚焦面的CCD成像过程进行研究,建立了用单一摄像机实现火焰深度方向聚焦面辐射图像与温度场分布关联模型,实现了火焰深度二维温度场的在线测量。实验室煤气燃烧实验表明:黑体炉标定后的关联模型实现了燃烧火焰内部温度场的在线测量与诊断,快门控制模型能有效解决辐射图像“发白”问题,扩大了CCD辐射测量的温度范围。  相似文献   

7.
中心给粉旋流燃烧器气固两相流动的数值模拟   总被引:4,自引:2,他引:2  
电厂采用的煤粉燃烧技术应达到稳燃、低污染、防结渣及防高温腐蚀的要求。中国电厂燃用煤的煤质偏差,煤种多变。在燃用这些煤的时候,锅炉的稳燃能力较低。针对这些问题,提出中心给粉旋流煤粉燃烧技术。由于燃烧器的气固流动特性对燃烧器的性能有很大的影响,利用可实现的k-ε和Lagrangian随机轨道模型对中心给粉旋流燃烧器的气固两相流动进行数值模拟,并将计算结果和三维相位多普勒测速技术(Phase-Doppler anemometry,PDA)试验结果进行详细比较,计算值和试验值速度分布的趋势基本相同。计算和试验结果表明,在轴向方向产生了回流区,切向速度分布出现典型的Rankine涡结构,中心线附近区域的径向速度小。当颗粒的轴向速度衰减为0之后,颗粒的运动方向发生偏转,开始向后上方运动。颗粒迂回型运动轨迹延长了煤粉在回流区中的停留时间。  相似文献   

8.
Isothermal, gas combustion and coal tests were undertaken in order to characterise a vertical cyclone combustor for burning anthracite. Inert particles (alumina cement) were used during the first two series of tests, in order to characterise chamber temperatures, material collection efficiencies and size distribution of particles. Mixture ratios from 0.4 up to 1.6 were tested in steps of 0.2. Under isothermal conditions, an optimum penetration length of vortex finder into the combustion chamber was found to be approximately 10% of the chamber length. The highest temperature can be obtained in the lower section of the combustion chamber both in gas and in coal combustion. The collection efficiency of the cyclone combustor in the various modes of operation was found to be excellent. For coal tests, mixed firing with coal and gas was adopted to sustain the flame in the combustor. The mixed fuels investigated here contain 60, 70 and 80% by mass of coal, and the 70% case was found favorable in the context of carbon burnout and collection efficiency.  相似文献   

9.
Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model.  相似文献   

10.
Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C10H22 and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H2O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.  相似文献   

11.
During the early stages of combustion when bituminous coal particles are in a nearly single particle combustion environment, a surrounding mantle of volatile products is observed. Initially, the cloud is of spherical shape and almost concentric with the particle. As the reaction progresses, more material is ejected in the shape of jet-like tails. This rapid mass release was observed through in-situ high speed photographs of particles in combustion environment, and was also confirmed by examining cross sections of the quenched samples of coal particles. The inner structure became porous, while base material softened and some portion of it was ejected due to high pressure build up inside. Direct sampling of the partly burned coal particles revealed that the material in the volatile cloud contained tarry substances and small sized particle fragments in addition to gaseous volatiles. These solid and condensible substances were seen as a luminous envelope which implied that they participated in the radiative transfer process.  相似文献   

12.
Oxy-fuel combustion exhibits combustion and heat transfer characteristics different from air-fuel combustion due to high concentrations of CO2 and H2O. This study evaluated the effect of gas and particle emissions on radiative heat transfer in oxy-fuel combustion of coal. For a hexahedral furnace, prescribed gas compositions based on combustion calculation were used to simplify the combustion reactions. The values of radiative heat fluxes (qrad) were compared for different combustion modes, flue gas recirculation (FGR) methods, particle concentrations, furnace sizes and O2 concentrations in the oxidizer. The radiation was calculated by the discrete ordinate method with gaseous emission predicted by the weighted sum of gray gases models (WSGGMs). The results showed that employing an optimized WSGGM is essential for the accurate prediction of qrad in oxy-fuel combustion for gaseous fuels. The conventional WSGGM showed large errors for larger furnace volumes or under dry FGR conditions. With higher particle concentrations such as in pulverized coal combustion, however, qrad was dominated by emission of particles. The effect of gas emissivity was not critical in the furnace with a mean beam length of 8.3m. Oxy-fuel combustion with wet FGR had higher qrad than dry FGR. The O2 concentration in the oxidizer was a key parameter for oxy-fuel combustion since increasing its value linearly increased qrad.  相似文献   

13.
An increasing awareness of the importance of petrographic characterization of coals to efficient selection of coals for pulverized coal combustion and metallurgical coking, has highlighted the need to improve slow and subjective optical microscopic procedures. Automated image-analysis procedures to measure vitrinite random reflectance are examined here in some detail, giving particular attention to inertinite-rich coals. It is shown by consideration of intra- and inter-particle reflectance variance that a given accuracy for vitrinite mean random reflectance (Rv) can be achieved by selection of an appropriate surface sampling procedure. The repeatability of Rv for single coals is similar to that for manual microscopy, but the reproducibility, as established by an international interchange exercise, is not yet good enough to specify a standard procedure. In some coals even vitrinite sub-macerals can be distinguished; however, caution is required when extending this method to vitrinite reflectance distributions of blends containing different rank coals or of heat-altered coals.  相似文献   

14.
Ignition and the burning of air-born single aluminum and magnesium particles are experimentally investigated. Particles of 30 to 106 μm-diameters were electrodynamically levitated, ignited, and burnt in atmospheric air. The particle combustion evolution was recorded by high-speed cinematography. Instant temperature and thermal radiation intensity were measured using two-wavelength pyrometry and photomultiplier tube methods. Ignition of the magnesium particle is prompt and substantially advances the aluminum particle by 10 ms. Burning time of the aluminum particles is extended 3 to 5 times longer than the magnesium particles. Exponents of a power-law fit of the burning rates are 1.55 and 1.24 for aluminum and magnesium particles, respectively. Flame temperature is slightly lower than the oxide melting temperature. For the aluminum, dimensionless flame diameter is inert to the initial particle size, but for the magnesium inversely proportional to the initial diameter.  相似文献   

15.
基于McKenna燃烧器的平面火焰携带流燃烧器系统的燃烧环境,采用彩色相机测温系统对运动中的燃煤颗粒进行拍摄。彩色相机测温系统经过黑体炉进行温度测量标定后,利用其r、g波段的响应,采用双色法对燃煤颗粒的温度进行测量。测温系统的标定采用基于BP神经网络训练的方法进行,通过对蜡烛燃烧火焰的拍摄,将得到的颗粒温度与热电偶数据进行对比,验证了测温系统的可靠性。实验研究了燃烧器出口不同距离处燃煤颗粒的温度信息,结果表明,燃煤颗粒温度随颗粒到喷嘴出口距离的变化整体呈先上升后下降趋势。该结果为研究煤粉燃烧过程及着火机理提供了参考。  相似文献   

16.

Biomass resources, which are carbon-neutral and sustainable, may help to address climate change and reduce greenhouse gas emissions. This study was performed to examine the effects of wood pellet (WP) particle size, environmental conditions (stoichiometric ratio; SR), and blending ratio on the combustion characteristics of single fuels and blends using a thermogravimetric analyzer and drop tube furnace (DTF). The results indicate that WP demonstrated a higher mass reduction in the devolatilization region and a faster reaction rate compared with coal. Blends tested in the analyzer showed the expected profiles for devolatilization and char oxidation without the presence of non-additive effects. However, the DTF results showed that simultaneous reactive and non-reactive phenomena occurred with increasing biomass-blending ratios. When WP fuel containing fine particles (< 200 μm) was blended with coal under low SR conditions, early-stage oxygen deficiency was caused by rapid combustion. WP fuel containing coarse particles (> 600 μm) showed that unburned carbon (UBC) increased owing to slower reactivity. WP fuel containing particles of 400 μm or less in size demonstrated superior UBC performance, indicating that biomass-coal blends were significantly affected by blending ratio, particle size, and the surrounding environment.

  相似文献   

17.

Mild combustion is characterized by its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise, and thermal stress. Recently, many studies have revealed the potential of MILD combustion in various power systems but most studies have been focused on gas phase fuel MILD combustion. Therefore, further study on MILD combustion using liquid fuel is needed for the application to a liquid-fueled gas turbine especially. In this work, we studied experimentally on the formation of liquid fuel MILD combustion under the condition of high dilution by burnt gas generated from a first premixed flame in two stages combustor which consists of the first premixed burner and secondary combustor. In particular, the effects of burnt gas velocity and oxygen level of burnt gas on the formation of liquid fuel MILD combustion were investigated. The results show that as the burnt gas velocity through the nozzle becomes higher, the color of flames was changed from yellow to pale blue and flames became very short. The OH radical measured by ICCD camera was uniformly distributed on the pale blue flame surface and its intensity was very low compared to conventional liquid diffusion flame. As burnt gas velocity is increased, local high-temperature region appeared to be diminished and the flame temperature became spatially uniform. And CO emission was sampled around 1 ppm and NOx emission was measured around 10 ppm under the overall equivalence ratio of 0.8 to 0.98 for 40 mm or less diameter of velocity control nozzle. This low NOx emission seems to be attributed to maintaining the average temperature in secondary combustor below the threshold temperature of thermal NOx formation. In view of the uniform temperature distribution, low OH radical intensity and low NOx emission data in the secondary combustor, formation of stable MILD combustion using kerosene liquid fuel could be verified at high burnt gas velocity.

  相似文献   

18.
为实现基于电站锅炉火焰图像的燃烧稳定性定量表征,并克服不稳定燃烧样本不足的训练难题,提出一种基于卷积变分自编码模型的燃烧稳定性实时、定量表征方法。首先使用稳定燃烧工况下的火焰图像进行模型训练,利用卷积变分自编码器得到稳定燃烧图像的高维潜在概率分布。记录该模型对应的隐变量分布特征,计算该分布与标准正态分布之间的KL散度值,利用该KL散度实现燃烧稳定性的定量表征。在仿真验证中,通过对比说明引入变分推断理论可提高模型对于燃烧图像的重构质量,图片重构前后均方根误差为0.005 48;通过磨煤机给煤量调整实验,人为制造不同稳定度的燃烧器燃烧工况,验证了该评价方法的准确性和有效性,评价准确率高达92.1%;通过与煤火检评价结果的比较,表明该方法具备煤火检系统对于火焰的定量判断功能,且感知能力更加灵敏,能在燃烧器灭火前167 s给出燃烧不稳定的预警,具有一定的工程应用价值。  相似文献   

19.
适用于燃用贫煤1 025 t/h锅炉的中心给粉旋流燃烧器   总被引:1,自引:0,他引:1  
提出了中心给粉旋流煤粉燃烧器,并针对某厂采用EI-DRB型燃烧器设计燃用贫煤的1 025 t/h锅炉稳燃能力差,不能燃用设计煤质的问题,进行了实验室冷态试验及锅炉冷、热态试验,得出了新型的燃烧器结构,并将下层8只燃烧器改造为新型燃烧器.试验表明,中心给粉燃烧器的回流区最大直径、长度与燃烧器最外层直径之比分别为1.40和1.89,可卷吸足够的高温烟气及时点燃煤粉,得出了外二次风叶片角度、一次风量、二次风量及三次风对燃烧器出口射流的影响规律;在实际运行参数下,EI-DRB型燃烧器没有回流区,不利于稳定燃烧.得出了二次风挡板开度和给粉机转数对燃烧器出口处温度场的影响规律.采用新型燃烧器后,锅炉效率提高,当电负荷降至140 MW时,锅炉可以不投油稳定运行,在燃用贫煤、无烟煤和贫煤的混煤时(混合比为11),锅炉在高负荷和低负荷下均可稳定运行.锅炉NOx排放下降.  相似文献   

20.
Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号