首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C/SiC–ZrB2–ZrC composites were prepared by reactive melt infiltration (RMI) combined with vacuum pressure impregnation (VPI) method. B4C–C was first introduced into C/SiC composites with a porosity of about 30% by impregnating the mixture of B4C and phenol formaldehyde resin, followed by pyrolysis at 900 °C. The molten ZrSi2 alloy was then infiltrated into the porous C/SiC–B4C–C to obtain C/SiC–ZrB2–ZrC composites. The flexural strength was tested. The ablation behavior was investigated under an oxyacetylene torch flame. It has been found that the C/SiC–ZrB2–ZrC showed a high flexural strength and an excellent ablation resistance. The reactions between ZrSi2 alloy and B4C–C were studied, and a model based on these reactions was built up to describe the formation mechanism of the matrix.  相似文献   

2.
Two-dimensional C/ZrC–SiC composites were fabricated by chemical vapor infiltration (CVI) process combined with a modified polymer infiltration and pyrolysis (PIP) method. Two kinds of ZrC slurries (ZrC aqueous slurry and ZrC/polycarbosilane slurry) were employed to densify composites before the PIP process. The as-produced C/ZrC–SiC composites exhibited better mechanical properties than the C/SiC composites densified only by CVI and PIP process. Structural evolution for C/ZrC–SiC composites treated in the range 1200–1800 °C mainly consisted of the change of SiC whiskers and the decomposition of polymer derived ceramic.  相似文献   

3.
《Ceramics International》2015,41(7):8488-8493
Cf/ZrC–SiC composites were fabricated by melt infiltration at 1800 °C using Zr–8.8Si alloy and carbon felt preforms. Microstructural analysis showed the formation of both ZrC and SiC phases in the matrix, in which ZrC acted as a main composition of the resulting composites. The results showed that carbon matrix reacted preferentially with Si of Zr–8.8Si alloy, which caused the formation of SiC first and then ZrC. The designed carbon coating by pyrolysis prevented the severe reaction between fibers and the melt. The composites could be more dense and uniform with the bending strength of 53.3 MPa, when preforms had a high open porosity (47.2%) with small size pores (10–40 μm).  相似文献   

4.
Cf/SiC-ZrC composites with different amounts and distributions of ZrC were fabricated by polymer impregnation and pyrolysis. The effects of the ZrC amount and distribution on the microstructural, mechanical, and ablation properties of Cf/SiC-ZrC composites were investigated. Cf/SiC-ZrC composites obtained by the alternating infiltration of ZrC organic precursors and polycarbosilane groups exhibit good tensile strength (240 ± 17.7 MPa) because the ZrC and SiC matrix can mix evenly. However, Cf/SiC-ZrC composites using only ZrC organic precursor infiltration show a low tensile strength (191 ± 16.6 MPa) because more defects can be introduced into the composites. Ablation characterization by a 30 kW plasma wind tunnel for 60 seconds showed that the Cf/SiC-ZrC composites with the highest amount of ZrC matrix (67.8 wt.%) possessed the lowest linear erosion rate of 4 μm/s because liquid SiO2 could fill the porous ZrO2 to form a homogenous protective layer. Nevertheless, the Cf/SiC-ZrC composites with a relatively high ZrC amount (55.3 wt.%) exhibited a poorer ablation performance compared to that of Cf/SiC-ZrC composites with a low ZrC amount (38.7 wt.%).  相似文献   

5.
Non-oxide fiber tow reinforced silicon nitride matrix composite was fabricated by low temperature CVI process with PyC as interphase. The tensile strength of the C and SiC fiber tow composites were 547 MPa and 740 MPa, respectively. The difference in tensile strength was analyzed based on the length, amount of pull-out fiber and also interface bonding. The infiltration uniformity of CVI silicon nitride (SiN) matrix within SiC fiber tow was comparable with that of CVI SiC matrix. These results suggested that the low temperature CVI process is suitable for the fabrication of fiber reinforced SiN matrix composites with proper interface bonding and high strength.  相似文献   

6.
Carbon fiber-reinforced zirconium carbide matrix composites (Cf/ZrC) were prepared by vacuum infiltrating porous carbon/carbon preforms with molten Zr2Cu alloy at 1200 °C. X-ray diffraction, scanning electron microcopy and transmission electron microscopy analysis were used to characterize the composition and microstructure of the final composites. It was found that the matrix of the composites were composed of the Cu–Zr–C amorphous phase dispersed with either single- or polycrystalline ZrC. Based on the microstructural analysis, the formation mechanism of the matrix was proposed to be a solution-precipitation and grain coalescence process. The influence of the heat treatment at 1800 °C was also investigated. Results indicated that at very high temperature the volatilization of residual metal somewhat deteriorated the flexural strength and the elastic modulus, but the fracture toughness of the composites was improved due to the sintering of ZrC grains.  相似文献   

7.
Ultra-high temperature ceramic matrix composites (C/SiC–ZrB2) are prepared by slurry and precursor infiltrations and pyrolysis method. C/SiC–ZrB2 composites with ZrB2 volume content from 10% to 24.6%, have balanced performance of fracture toughness (17.7–8.1 MPa m1/2), flexural strength at room temperature (367–163 MPa) and at high temperature (strength retention 74% at 1800 °C and over 32% at 2000 °C), better oxidation and ablation resistance under oxyacetylene torch environment (recession rate 0.01 mm/s).  相似文献   

8.
《Ceramics International》2016,42(6):6720-6727
3D Cf/ZrC–SiC composites were prepared by a combination process of slurry infiltration and reactive melt infiltration. ZrO2 powders and ZrSi2 alloy, both of which reacted with amorphous carbon, were used as pore-making agent and infiltrator, respectively. After carbothermal reduction at 1650 °C, X-ray diffraction analysis revealed that ZrO2 powders were completely converted into ZrC by reacting with amorphous carbon, and an in-situ formed submicron porous configuration was observed at the areas containing ZrO2. Results showed that the matrix in composites mainly consisted of SiC, ZrC and a small quantity of residual metal. SEM and TEM images revealed the formation of ZrC or SiC intergranular particles in the matrix and the characteristic around the residual resin carbon. The composites had a bending strength of 94.89±16.7 MPa, fracture toughness of 11.0±0.98 MPa m1/2, bulk density of 3.36±0.01 g/cm3, and open porosity of 4.64±0.40%. The formation mechanisms of ZrC–SiC dual matrix and intrabundles׳ structure were discussed in the article.  相似文献   

9.
《Ceramics International》2020,46(14):22102-22107
Multiphase ceramics like ZrC/SiC are promising candidates as ultra-high temperature ceramics for applications in extreme environments. In this work, non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics were synthesized by a one-pot reaction of three components – metal source, silicon source, and activating reagent. Molecular structures of the precursors were identified by 1H NMR and FTIR. Transformation process of the precursors to the ZrC/SiC ceramics was investigated via XRD and SEM. After heat-treatment at 1600 °C under argon, the obtained ZrC/SiC and HfC/SiC ceramics features a particle size of 100–200 nm and high metal content without excess carbon. The elemental composition of pyrolyzed ceramics can be tuned by varying the ratio of the reagents in the synthesis of precursors. This strategy also inspires a facile fabrication of composite ceramics with other elemental compositions.  相似文献   

10.
BN-nanoparticle-containing SiC-matrix-based composites comprising SiC fibers and lacking a fiber/matrix interface (SiC/BN + SiC composites) were fabricated by spark plasma sintering (SPS) at 1800°C for 10 min under 50 MPa in Ar. The content of added BN nanoparticles was varied from 0 to 50 vol.%. The mechanical properties of the SiC/BN + SiC composites were investigated thoroughly. The SiC/BN + SiC composites with a BN nanoparticle content of 50 vol.%, which had a bulk density of 2.73 g/cm3 and an open porosity of 5.8%, exhibited quasiductile fracture behavior, as indicated by a short nonlinear region and significantly shorter fiber pullouts owing to the relatively high modulus. The composites also exhibited high strength as well as bending, proportional limit stress, and ultimate tensile strength values of 496 ± 13, 251 ± 30, and 301 MPa ± 56 MPa, respectively, under ambient conditions. The SiC fibers with contents of BN nanoparticles above 30 vol.% were not severely damaged during SPS and adhered to the matrix to form a relatively weak fiber/matrix interface.  相似文献   

11.
The fiber/matrix (F/M) interfacial shear strength (IFSS) of carbon/carbon (C/C) composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers was investigated. To obtain C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers, a thin layer of PyC was deposited on carbon fibers. After this, TaC and SiC–TaC layer(s) were uniformly deposited on the PyC coated carbon fibers. As an outer-layer, a PyC layer was deposited on these TaC and/or SiC–TaC coated carbon fibers by isothermal chemical vapour infiltration (CVI) and then densified with resin carbon by impregnation and carbonization. Finally, C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers were obtained. The effects of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers on interfacial shear strength (IFSS) of C/C composites were investigated. Single fiber push-out tests were conducted on the fibers aligned perpendicularly on the thin slices specimen surface using nano-indentation. Results showed that the IFSS of C/C composites decreased with the introduction of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers. After heat treatment (at temperatures ranging from 1400 to 2500 °C) of C/C composites with PyC–TaC–PyC multi-interlayers, it was found that the IFSS decreased with the increase in temperature. This decrease in IFSS is explained by taking into account the microstructural variations on heat treatment.  相似文献   

12.
Low thermal expansion porous SiC–WC composite ceramics were prepared by solid state reaction of Si and WC at 1560 °C, with NH4HCO3 as a pore generating agent. Phase composition, thermal expansion, flexural strength, and microstructure of the carbide ceramics were examined. Presence of the SiC, WC and WC1−X phases were detected in the carbide ceramics. As Si content increased from 2 to 14 wt%, the coefficient of thermal expansion first decreased and then increased, with a minimum of 4.11 × 10−6 °C at 8 wt% Si, whereas the flexural strength decreased gradually, from 143.9 to 82.7 MPa. Pores of SiC–WC ceramics were less than 2 μm in diameter, because of the stacking interstice of carbide particles and volatilization of silicon. However in the presence of NH4HCO3, pores of SiC–WC ceramics were bimodally distributed, the stacking interstice of carbide particles loosened from 1 to 4 μm and pores larger than 5 μm were also formed.  相似文献   

13.
Carbon fiber-reinforced zirconium carbide matrix (Cf/ZrC) composites were fabricated by a liquid metal infiltration process at 1200 °C, using low melting Zr7Cu10, ZrCu and Zr2Cu alloys as infiltrators. The effects of Cu on microstructure and mechanical properties of the composites were investigated. The results indicated that the products were composed of either single- or polycrystalline ZrC, C and Cu. With increasing Cu content in the infiltrators, the yield of ZrC decreased from 43.7 vol% to 27.9 vol%. When ZrCu was used as an infiltrator, the obtained composites exhibited a better bending strength of 98.2±3.1 MPa. What is more, the use of Zr2Cu could provide the highest fracture toughness of the composites with a moderate debonding.  相似文献   

14.
2D C/ZrC–SiC composites were fabricated by chemical vapor infiltration combined with polymer slurry infiltration and pyrolysis. Liquid highly branched polycarbosilane was used as the pre-ceramic precursor. In order to improve the oxidation resistance, three kinds of coating structures were prepared on C/ZrC–SiC composites: pure zirconium carbide coating, SiC–ZrC coating, and ZrB2–SiC coating. Structural evolutions of the as-produced composites after oxidation in CH4 combustion gas atmosphere at about 1800 °C were investigated and compared. Based on a model of the oxidation process, the mixture ZrB2–CVD SiC showed the best oxidation resistance.  相似文献   

15.
Wood with its rational and magical inner structures was used as a template to fabricate Al/C and Al/(SiC + C) composites in this research. Porous carbon was first pyrolyzed from the wood template. The final composites were then obtained by injecting aluminum alloy and silicone resin into the porous carbon. The microstructures, thermal conductivity, and thermal expansions of these products were then analyzed. The results indicated that the structures of the composites are controlled by the natural structure of wood. Moreover, the composites exhibit a lower coefficient of thermal expansion than aluminum and a higher thermal conductivity than porous carbon.  相似文献   

16.
Carbon fiber reinforced ceramic matrix composites (C/C-SiC composites) were fabricated using a type of high-char-yield phenolic resin with the char yield of 81.17 wt.%. Firstly, the fabric prepreg was prepared by spreading the phenolic resin solution onto the two dimensional carbon fiber plain weave fabric and dried consequently. Afterward, the resin was cured and then the carbon fiber reinforced polymer (CFRP) was pyrolyzed to get amorphous carbon. Finally, C/C-SiC composites were obtained through liquid silicon infiltration (LSI) process. SEM micrographs showed that the Si/SiC area was homogeneously dispersed in the matrix, and during the siliconization process, a layer of SiC was formed along the surface of carbon fibers or carbon matrix. The fiber volume of CFRP was about 40 vol.%, which was much lower than other studies. XRD result indicated that only β-SiC type was formed. The result of X-ray computed tomography clearly showed the structure changes before and after the melt infiltration process. Mechanical property test showed that the composites had fracture strength of 186 ± 23 MPa, and a flexural modulus of 106 ± 8 GPa.  相似文献   

17.
Cf/ZrC‐SiC composites with a density of 2.52 g/cm3 and a porosity of 1.68% were fabricated via reactive melt infiltration (RMI) of Si into nano‐porous Cf/ZrC‐C preforms. The nano‐porous Cf/ZrC‐C preforms were prepared through a colloid process, with a ZrC “protective coating” formed surrounding the carbon fibers. Consequently, highly dense Cf/ZrC‐SiC composites without evident fiber/interphase degradation were obtained. Moreover, abundant needle‐shaped ZrSi2 grains were formed in the composites. Benefiting from this unique microstructure, flexural strength, and elastic modulus of the composites are as high as 380 MPa and 61 GPa, respectively, which are much higher than Cf/ZrC‐SiC composites prepared by conventional RMI.  相似文献   

18.
Tzeng  Lin 《Carbon》1999,37(12):2011
Effect of interfacial carbon layers on the mechanical properties and fracture behavior of two-dimensional carbon fiber fabrics reinforced carbon matrix composites were investigated. Phenolic resin reinforced with two-dimensional plain woven carbon fiber fabrics was used as starting materials for carbon/carbon composites and was prepared using vacuum bag hot pressing technique. In order to study the effect of interfacial bonding, a carbon layer was applied to the carbon fabrics in advance. The carbon layers were prepared using petroleum pitch with different concentrations as precursors. The experimental results indicate that the carbon/carbon composites with interfacial carbon layers possess higher fracture energy than that without carbon layers after carbonization at 1000°C. For a pitch concentration of 0.15 g/ml, the carbon/carbon composites have both higher flexural strength and fracture energy than composites without carbon layers. Both flexural strength and fracture energy increased for composites with and without carbon layers after graphitization. The amount of increase in fracture energy was more significant for composites with interfacial carbon layers. Results indicate that a suitable pitch concentration should be used in order to tailor the mechanical behavior of carbon/carbon composites with interfacial carbon layers.  相似文献   

19.
《Ceramics International》2020,46(14):22661-22673
Characteristics of ZrB2–SiC ultrahigh temperature ceramic matrix composites (UHTCMCs) reinforced with ZrC and carbon fiber (Cf) were investigated in this article. Spark plasma sintering (SPS) process was utilized to fabricate the samples at 1800 °C for 5 min under 30 MPa punch pressure and vacuumed atmosphere. In all samples, the volume ratio of ZrB2: SiC was equal to 4:1, and the summation of ZrC and Cf reinforcements was 7.5 vol% with different ZrC: Cf ratios. Field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), densitometry, flexural strength, and hardness measurements were employed for characterization of the prepared samples. Microstructural inspection revealed the formation of SiC sheath around the carbon fibers due to several reactions in the surface SiO2 layers existed on the SiC particles. Optimal flexural strength (628.4 MPa) and hardness (20.8 GPa) values were achieved for the sample co-reinforced with 6.5 vol% ZrC and 1 vol% Cf, with a relative density of 97.7%.  相似文献   

20.
This study presents the fabrication and characterization of composite materials of hydroxyapatite and Ti. Hydroxyapatite (HA) powder was obtained from bovine bones (BHA) and human enamel (EHA) via calcination technique. Fine powders of HA were admixed with 5 and 10 wt.% fine powder of metallic Ti. Powder-compacts were sintered at different temperatures between 1000 and 1300 °C. Compression strength, Vickers microhardness and elastic modulus as well as density were measured. SEM and X-ray diffraction studies were also conducted. The experimental results showed that addition of Ti to EHA and BHA decreases the elastic modulus, comparing to samples of pure BHA. The best mechanical properties for BHA–Ti composites were obtained after sintering in the range of 1200–1300 °C and for EHA–Ti composites in the range of 1100–1300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号