首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In mice lacking the nociceptin (or orphanin FQ) receptor gene, when 10 mg/kg of morphine was subcutaneously given, a potent analgesia in the tail pinch test was observed. The analgesic effect of morphine was equivalent among wild-type, heterozygous and homozygous mutant mice. When morphine was given to such mice in a dose of 10 mg/kg once per day for 5 days, wild-type and heterozygous mice showed marked tolerance or reduction in the morphine analgesia on the 5th day, while homozygous mice showed only 50% reduction in the peripheral analgesia of morphine. These findings suggest that nociceptin or its receptor plays important roles in the in vivo mechanism for the development of morphine tolerance.  相似文献   

2.
The glutamate analog, L-2-amino-4-phosphonobutyric acid (L-AP4) is a selective agonist for several members of the metabotropic glutamate receptor (mGluR) family. Activation of presynaptic mGluRs by L-AP4 causes a suppression of synaptic transmission in the central nervous system. In this study, the role of 1 subtype of mGluR in the nervous system was investigated by analyzing mutant mice lacking the L-AP4-sensitive receptor, mGluR4. Experiments designed to probe hippocampal function showed no impairments in acquisition of spatial learning in the water maze task. However, in a spatial reversal learning task, the mutant mice exhibited significantly accelerated learning performance. Furthermore, in a probe trial administered 6 weeks posttraining, these mice showed impaired spatial accuracy. The results suggest that the mutant mice differed in their ability to learn and integrate new spatial information into previously formed memory traces and that their use of stored spatial information also was altered. Thus, the presynaptically expressed mGluR4 plays a role in the processing of spatial information. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Altered antigen presentation in mice lacking H2-O   总被引:1,自引:0,他引:1  
The phenomenon of transgenerational traumatization has currently become widely recognized and described, although the task of disentangling the underlying interactional mechanisms remains a difficult one. These transgenerational mechanisms were first detected in families of the survivors of the Holocaust, but they may be equally prominent in families of parents who have been traumatized in other ways, for example, as victims of child neglect and abuse, as orphaned children, or during military service. In cases in which parents have themselves been subjected to early parental deprivation, one or more children may become projectively identified with a parent's (posttraumatic) "bad child"-self, whereas the parent him/herself has identified with--enacts the role of--the idealized internal "martyr" parent. A case study is presented describing the individual and family therapeutic treatment of a woman who, as a child, had been traumatically separated from her parents.  相似文献   

4.
N-formylpeptides derive from bacterial and mitochondrial proteins, and bind to specific receptors on mammalian phagocytes. Since binding induces chemotaxis and activation of phagocytes in vitro, it has been postulated that N-formylpeptide receptor signaling in vivo may be important in antimicrobial host defense, although direct proof has been lacking. Here we test this hypothesis in mice lacking the high affinity N-formylpeptide receptor (FPR), created by targeted gene disruption. FPR-/- mice developed normally, but had increased susceptibility to challenge with Listeria monocytogenes, as measured by increased mortality compared with wild-type littermates. FPR-/- mice also had increased bacterial load in spleen and liver 2 d after infection, which is before development of a specific cellular immune response, suggesting a defect in innate immunity. Consistent with this, neutrophil chemotaxis in vitro and neutrophil mobilization into peripheral blood in vivo in response to the prototype N-formylpeptide fMLF (formyl-methionyl-leucyl-phenylalanine) were both absent in FPR-/- mice. These results indicate that FPR functions in antibacterial host defense in vivo.  相似文献   

5.
A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.  相似文献   

6.
Adenosine is released from metabolically active cells by facilitated diffusion, and is generated extracellularly by degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types, including various neuronal populations, platelets, neutrophils and mast cells, and smooth muscle cells in bronchi and vasculature. Most of these effects help to protect cells and tissues during stress conditions such as ischaemia. Adenosine mediates its effects through four receptor subtypes: the A1, A2a, A2b and A3 receptors. The A2a receptor (A2aR) is abundant in basal ganglia, vasculature and platelets, and stimulates adenylyl cyclase. It is a major target of caffeine, the most widely used psychoactive drug. Here we investigate the role of the A2a receptor by disrupting the gene in mice. We found that A2aR-knockout (A2aR-/-) mice were viable and bred normally. Their exploratory activity was reduced, whereas caffeine, which normally stimulates exploratory behaviour, became a depressant of exploratory activity. Knockout animals scored higher in anxiety tests, and male mice were much more aggressive towards intruders. The response of A2aR-/- mice to acute pain stimuli was slower. Blood pressure and heart rate were increased, as well as platelet aggregation. The specific A2a agonist CGS 21680 lost its biological activity in all systems tested.  相似文献   

7.
Insulin resistance is often associated with atherosclerotic diseases in subjects with obesity and impaired glucose tolerance. This study examined the effects of insulin resistance on coronary risk factors in IRS-1 deficient mice, a nonobese animal model of insulin resistance. Blood pressure and plasma triglyceride levels were significantly higher in IRS-1 deficient mice than in normal mice. Impaired endothelium-dependent vascular relaxation was also observed in IRS-1 deficient mice. Furthermore, lipoprotein lipase activity was lower than in normal mice, suggesting impaired lipolysis to be involved in the increase in plasma triglyceride levels under insulin-resistant conditions. Thus, insulin resistance plays an important role in the clustering of coronary risk factors which may accelerate the progression of atherosclerosis in subjects with insulin resistance.  相似文献   

8.
Surfactant protein D (SP-D) is one of two collectins found in the pulmonary alveolus. On the basis of homology with other collectins, potential functions for SP-D include roles in innate immunity and surfactant metabolism. The SP-D gene was disrupted in embryonic stem cells by homologous recombination to generate mice deficient in SP-D. Mice heterozygous for the mutant SP-D allele had SP-D concentrations that were approximately 50% wild type but no other obvious phenotypic abnormality. Mice totally deficient in SP-D were healthy to 7 months but had a progressive accumulation of surfactant lipids, SP-A, and SP-B in the alveolar space. By 8 weeks the alveolar phospholipid pool was 8-fold higher than wild-type littermates. There was also a 10-fold accumulation of alveolar macrophages in the null mice, and many macrophages were both multinucleated and foamy in appearance. Type II cells in the null mice were hyperplastic and contained giant lamellar bodies. These alterations in surfactant homeostasis were not associated with detectable changes in surfactant surface activity, postnatal respiratory function, or survival. The findings in the SP-D-deficient mice suggest a role for SP-D in surfactant homeostasis.  相似文献   

9.
The authors described symptoms of Rubinstein-Taybi syndrome and presented a treatment of this disease. It concerned a 1-year-old baby with obstruction of left lacrimal ducts, psychomotor retardation and facial abnormalities.  相似文献   

10.
Estrogen receptor alpha knockout (ERαKO) male mice fail to display sexual behavior. The authors hypothesized that ERαKOs require higher testosterone (T) concentrations than wild-type (WT) males to exhibit copulatory behavior. Increasing T stimulated sexual behavior and preference for females in WT males but failed to do so in ERαKOs. However, T did induce female-directed aggression in ERαKOs. In aggression tests, WT residents selectively attacked T-treated male intruders. ERαKO residents attacked female, T-treated male, and estrogen-treated male intruders equally. Increased access to olfactory cues prior to direct contact reduced overall aggression in ERαKO versus WT males but did not cause ERαKOs to differentially attack male and female opponents. Results suggest that ERα is essential for normal social behavior, perhaps via processing of chemoinvestigatory cues, which are required to discriminate males from females. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Estrogens influence the differentiation and maintenance of reproductive tissues and affect lipid metabolism and bone remodeling. Two estrogen receptors (ERs) have been identified to date, ERalpha and ERbeta. We previously generated and studied knockout mice lacking estrogen receptor alpha and reported severe reproductive and behavioral phenotypes including complete infertility of both male and female mice and absence of breast tissue development. Here we describe the generation of mice lacking estrogen receptor beta (ERbeta -/-) by insertion of a neomycin resistance gene into exon 3 of the coding gene by using homologous recombination in embryonic stem cells. Mice lacking this receptor develop normally and are indistinguishable grossly and histologically as young adults from their littermates. RNA analysis and immunocytochemistry show that tissues from ERbeta -/- mice lack normal ERbeta RNA and protein. Breeding experiments with young, sexually mature females show that they are fertile and exhibit normal sexual behavior, but have fewer and smaller litters than wild-type mice. Superovulation experiments indicate that this reduction in fertility is the result of reduced ovarian efficiency. The mutant females have normal breast development and lactate normally. Young, sexually mature male mice show no overt abnormalities and reproduce normally. Older mutant males display signs of prostate and bladder hyperplasia. Our results indicate that ERbeta is essential for normal ovulation efficiency but is not essential for female or male sexual differentiation, fertility, or lactation. Future experiments are required to determine the role of ERbeta in bone and cardiovascular homeostasis.  相似文献   

12.
In the present study, we examined the effects of dopamine (DA) receptor antagonists infused into the nucleus accumbens septi (NAS) on analgesia induced by intra-ventral tegmental area (VTA) infusions of the substance P (SP) analog, DiMe-C7 or morphine and intra-NAS infusions of amphetamine. Rats received intra-NAS infusions of either the mixed DA receptor antagonist flupenthixol (1.5 or 3.0 microg/0.5 microl/side; DiMe-C7 only), the DA D1/D5 receptor antagonist SCH 23390 (0.1 microg/0.5 microl/side; DiMe-C7 only) or the DA D2-type receptor antagonist raclopride (1.0, 3.0 or 5.0 microg/0.5 microl/side). Ten minutes later, rats received intra-VTA infusions of DiMe-C7 (3.0 microg/0.5 microl/side) or morphine (3.0 microg/0.5 microl/side) or intra-NAS infusions of amphetamine (2.5 microg/0.5 microl/side). Animals were then administered the formalin test for tonic pain. Intra-NAS raclopride prevented analgesia induced by intra-VTA DiMe-C7, intra-VTA morphine and intra-NAS amphetamine. Similarly, intra-NAS flupenthixol or SCH 23390 attenuated the analgesia induced by intra-VTA DiMe-C7. These findings suggest that tonic pain is inhibited, at least in part, by enhanced DA released from terminals of mesolimbic neurons. Furthermore, the evidence that SP and opioids in the VTA mediate stress-induced analgesia suggests that the pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, pain or both.  相似文献   

13.
FKBP12, a cis-trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitously expressed and interacts with proteins in several intracellular signal transduction systems. Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-beta (TGF-beta) superfamily in vitro, the function of FKBP12 in TGF-beta superfamily signalling is controversial. FKBP12 also physically interacts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine receptor (RyR1). In contrast, the cardiac ryanodine receptor, RyR2, appears to bind selectively the FKBP12 homologue, FKBP12.6. To define the functions of FKBP12 in vivo, we generated mutant mice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle but have severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of left ventricular myocardium. About 9% of the mutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable for TGF-beta-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodine receptors.  相似文献   

14.
Stimulation of the epidermal growth factor receptor (EGF-R) produces numerous effects on central nervous system (CNS) cells in vitro including neuronal survival and differentiation, astrocyte proliferation and the proliferation of multipotent progenitors. However, the in vivo role of EGF-R is less well understood. In the present study, we demonstrate that EGF-R null mice generated on a 129Sv/J Swiss Black background undergo focal but massive degeneration the olfactory bulb, piriform cortex, neocortex, and thalamus between postnatal days 5 and 8 which is due, at least in part, to apoptosis. Some of the neuronal populations that degenerate do not normally express EGF-R, indicating an indirect mechanism of neuronal death. There were also delays in GFAP expression within the glia limitans and within structures outside the germinal zones in early postnatal ages. At or just prior to the onset of the degeneration, however, there was an increase in GFAP expression in these areas. The brains of EGF-R (-/-) animals were smaller but cytoarchitecturally normal at birth and neuronal populations appeared to be intact, including striatal GABAergic and midbrain dopaminergic neurons which have previously been shown to express EGF-R. Multipotent progenitors and astrocytes derived from EGF-R (-/-) mice were capable of proliferating in response to FGF-2. These data demonstrate that EGF-R expression is critical for the maintenance of large portions of the postnatal mouse forebrain as well as the normal development of astrocytes.  相似文献   

15.
Chemokines are a structurally related family of cytokines that are important for leukocyte trafficking. The C-C chemokine monocyte chemoattractant protein-1 (MCP-1) is a potent monocyte activator in vitro and has been associated with monocytic infiltration in several inflammatory diseases. One C-C chemokine receptor, CCR2, has been identified that mediates in vitro responses to MCP-1 and its close structural homologues. CCR2 has also recently been demonstrated to be a fusion cofactor for several HIV isolates. To investigate the normal physiological function of CCR2, we generated mice with a targeted disruption of the ccr2 gene. Mice deficient for CCR2 developed normally and had no hematopoietic abnormalities. However, ccr2(-/-) mice failed to recruit macrophages in an experimental peritoneal inflammation model. In addition, these mice were unable to clear infection by the intracellular bacteria, Listeria monocytogenes. These results suggest that CCR2 has a nonredundant role as a major mediator of macrophage recruitment and host defense against bacterial pathogens and that MCP-1 and other CCR2 ligands are effectors of those functions.  相似文献   

16.
Fever, a hallmark of disease, is elicited by exogenous pyrogens, that is, cellular components, such as lipopolysaccharide (LPS), of infectious organisms, as well as by non-infectious inflammatory insults. Both stimulate the production of cytokines, such as interleukin (IL)-1beta, that act on the brain as endogenous pyrogens. Fever can be suppressed by aspirin-like anti-inflammatory drugs. As these drugs share the ability to inhibit prostaglandin biosynthesis, it is thought that a prostaglandin is important in fever generation. Prostaglandin E2 (PGE2) may be a neural mediator of fever, but this has been much debated. PGE2 acts by interacting with four subtypes of PGE receptor, the EP1, EP2, EP3 and EP4 receptors. Here we generate mice lacking each of these receptors by homologous recombination. Only mice lacking the EP3 receptor fail to show a febrile response to PGE2 and to either IL-1beta or LPS. Our results establish that PGE2 mediates fever generation in response to both exogenous and endogenous pyrogens by acting at the EP3 receptor.  相似文献   

17.
Mice lacking the mu-opioid receptor (MOR) gene have been successfully developed by homologous recombination and these animals show complete loss of analgesic responses to morphine as well as loss of place-preference activity and physical dependence on this opioid. We report here quantitative autoradiographic mapping of opioid receptor subtypes in the brains of wild-type, heterozygous and homozygous mutant mice to demonstrate the deletion of the MOR gene, to investigate the possible existence of any mu-receptor subtypes derived from a different gene and to determine any modification in the expression of other opioid receptors. Mu-, delta-, kappa1- and total kappa-receptors, in adjacent coronal sections in fore- and midbrain and in sagittal sections, were labelled with [3H]DAMGO (D-Ala2-MePhe4-Gly-ol5 enkephalin), [3H]DELTI (D-Ala2 deltorphinI), [3H]CI-977 and [3H]bremazocine (in the presence of DAMGO and DPDPE) respectively. In heterozygous mice, deficient in one copy of the MOR gene, mu-receptors were detectable throughout the brain at about 50% compared to wild-type. In brains from mu-knockout mice there were no detectable mu-receptors in any brain regions and no evidence for mu-receptors derived from another gene. Delta-, kappa1- and total kappa-receptor binding was present in all brain regions in mutant mice where binding was detected in wild-type animals. There were no major quantitative differences in kappa- or delta-binding in mutant mice although there were some small regional decreases. The results indicate only subtle changes in delta- and kappa-receptors throughout the brains of animals deficient in mu-receptors.  相似文献   

18.
19.
The effects of beta-3 adrenergic receptor (beta3-AR) agonists on gastrointestinal (GI) motility, as reported by stomach retention and intestinal transit of radiolabelled charcoal, were compared in wild-type (WT) mice and in transgenic mice lacking beta3-AR (beta3-AR[KO]) or having beta3-AR in white and brown adipose tissue only (beta3-AR[WAT+BAT]). After s.c. administration of 3 mg/kg of the selective, rodent specific beta3-AR agonists BRL 35135, CL 316, 243 or ICI 198,157, WT mice exhibited a significant decrease in the extent of movement of radiotracer through the stomach and intestines, indicative of decreased GI motility. These compounds also caused an increase in plasma glycerol levels in the WT mice, suggesting that increased lipolysis in adipose tissue had been evoked. None of these compounds had an effect on GI motility or evoked lipolysis in the beta3-AR[KO] mice. Treatment of WT mice with SR 56811A, a beta3-AR agonist that exhibited a relatively lower affinity for rodent beta3-AR in vitro, did not affect GI motility or plasma glycerol levels in WT or beta3[KO] mice when administered s.c. at 3 mg/kg. Clonidine, an alpha-2 adrenergic receptor agonist, used as a positive control in these GI studies, caused a decrease in GI motility in both WT and beta3-AR[KO] mice. These results are consistent with a postulated role for beta3-AR in regulation of GI motility in the mouse. However, treatment of beta3-AR[WAT+BAT] mice with 3 mg/kg BRL 35135 resulted in elevated plasma glycerol levels, as well as increased stomach retention and decreased intestinal transit of radiotracer. These results suggest that this beta3-AR agonist may exert its effects on the GI tract indirectly, through an unknown signaling mechanism activated by agonism of beta3-AR in adipose tissue.  相似文献   

20.
We have investigated the expression, using immunohistochemical and Western blot methods, of some cytoskeletal proteins including desmin, vimentin, actin, alpha-actinin, and ubiquitin in hereditary myopathy of the diaphragmatic muscles in Holstein-Friesian cattle (the histochemical and electron microscopical aspects have been previously reported). Immunohistochemically, the expression of desmin was observed strongly in the subsarcolemmal regions, but was lacking or faint in the area corresponding to the core-like structures. Vimentin showed almost the same localization as desmin, but no activity could be observed in the core-like structures. In addition, the core-like structures showed strong immunoreactivity for actin and ubiquitin, but no immunoreactivity for alpha-actinin. F-actin stained with phalloidin-tetramethyl-rhodamine was strongly positive in irregular spots that corresponded to the core-like structures, but was negative for desmin-positive regions. Western blot analysis of the diseased muscles revealed a significant increase in the amount of desmin and vimentin immunoreactivities and similar amounts of actin and alpha-actinin compared with the control muscles. Two-dimensional electrophoresis revealed no isoforms of desmin, suggesting the absence of abnormal phosphorylated forms of desmin. Since the co-localization of desmin and vimentin and the absence of phosphorylated desmin suggest that the overexpression of desmin may be reflected in the reactive change or regenerating process, the present myopathy should be regarded as an entity separate from desmin-storage myopathy or desmin-related myopathies. We also discuss the possibility that the present myopathy could be considered as myofibrillar myopathy, a recently proposed nosological entity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号