首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the Ba(Zr0.1Ti0.9)O3 (BZ1T9) thin films have been well deposited on the Pt/Ti/SiO2/Si substrate. The optimum radio frequency (RF) deposition parameters are developed, and the BZ1T9 thin films deposition at the optimum parameters have the maximum capacitance and dielectric constant of 4.4 nF and 190. As the applied voltage is increased to 8 V, the remnant polarization and coercive field of BZ1T9 thin films are about 4.5 microC/cm2 and 80 kV/cm. The counterclockwise current hysteresis and memory window of n-channel thin-film transistor property are observed, and that can be used to indicate the switching of ferroelectric polarization of BZ1T9 thin films. One-transistor-capacitor (1TC) structure of BZ1T9 ferroelectric random access memory device using bottom-gate amorphous silicon thin-film transistor was desirable because of the smaller size and better sensitivity. The BZ1T9 ferroelectric RAM devices with channel width = 40 microm and channel length = 8 microm has been successfully fabricated and the ID-VG transfer characteristics also are investigated in this study.  相似文献   

2.
Hardware implementation of artificial synaptic devices that emulate the functions of biological synapses is inspired by the biological neuromorphic system and has drawn considerable interest. Here, a three‐terminal ferrite synaptic device based on a topotactic phase transition between crystalline phases is presented. The electrolyte‐gating‐controlled topotactic phase transformation between brownmillerite SrFeO2.5 and perovskite SrFeO3?δ is confirmed from the examination of the crystal and electronic structure. A synaptic transistor with electrolyte‐gated ferrite films by harnessing gate‐controllable multilevel conduction states, which originate from many distinct oxygen‐deficient perovskite structures of SrFeOx induced by topotactic phase transformation, is successfully constructed. This three‐terminal artificial synapse can mimic important synaptic functions, such as synaptic plasticity and spike‐timing‐dependent plasticity. Simulations of a neural network consisting of ferrite synaptic transistors indicate that the system offers high classification accuracy. These results provide insight into the potential application of advanced topotactic phase transformation materials for designing artificial synapses with high performance.  相似文献   

3.
In this study, the Ba(Zr0.1Ti0.9)O3 (BZ1T9) thin films have been well deposited on the Pt/Ti/SiO2/Si substrate. The optimum radio frequency (RF) deposition parameters are developed, and the BZ1T9 thin films deposition at the optimum parameters have the maximum capacitance and dielectric constant of 4.4 nF and 190. As the applied voltage is increased to 8 V, the remnant polarization and coercive field of BZ1T9 thin films are about 4.5 muC/cm2 and 80 kV/cm. The counterclockwise current hysteresis and memory window of n-channel thin-film transistor property are observed, and that can be used to indicate the switching of ferroelectric polarization of BZ1T9 thin films. One-transistor-capacitor (1TC) structure of BZ1T9 ferroelectric random access memory device using bottom-gate amorphous silicon thin-film transistor was desirable because of the smaller size and better sensitivity. The BZ1T9 ferroelectric RAM devices with channel width = 40 mum and channel length = 8 mum has been successfully fabricated and the ID-VG transfer characteristics also are investigated in this study.  相似文献   

4.
In this study, a simple method of fabricating a thin-film transistor (TFT) with a double-layered channel using indium–zinc-oxide (IZO) films was proposed. Two IZO films used as channel layers were consecutively deposited via sputtering without stopping the vacuum and only by changing the volumetric fraction of the additive O2 gas during the deposition. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis showed a large difference in the depth profiles of the InO? and InO2? ions between the two IZO layers. Compared to the conventional single-IZO-channel TFT, the double-IZO-channel TFT that was fabricated using the proposed two-step deposition method showed greatly improved electrical characteristics: the on/off-state current ratio was increased from 1.30 × 105 to 1.03 × 106, and the field effect mobility was enhanced from 1.2 to 9.3 cm2/Vs.  相似文献   

5.
The wet etch process for amorphous indium gallium zinc oxide (a-IGZO or a-InGaZnO) by using various etchants is reported. The etch rates of a-IGZO, compared to another indium-based oxides including indium gallium oxide (IGO), indium zinc oxide (IZO), and indium tin oxide (ITO), are measured by using acetic acid, citric acid, hydrochloric acid, perchloric acid, and aqua ammonia as etchants, respectively. In our experimental results, the etch rate of the transparent oxide semiconductor (TOS) films by using acid solutions ranked accordingly from high to low are IZO, IGZO, IGO and ITO. Comparatively, the etch rate of the TOS films by using alkaline ammonia solution ranked from high to low are IGZO, IZO, IGO and ITO, in that order.Using the proposed wet etching process with high etch selectivity, bottom-gate-type thin-film transistors (TFTs) based on a-IGZO channels and Y2O3 gate-insulators were fabricated by radio-frequency sputtering on plastic substrates. The wet etch processed TFT with 30 µm gate length and 120 µm gate width exhibits a saturation mobility of 46.25 cm2 V− 1 s− 1, a threshold voltage of 1.3 V, a drain current on-off ratio > 106 , and subthreshold gate voltage swing of 0.29 V decade− 1. The performance of the TFTs ensures the applicability of the wet etching process for IGZO to electronic devices on organic polymer substrates.  相似文献   

6.
电阻式存储器由于具有众多的优点有望成为最有前景的下一代高速非挥发性存储器的选择之一.实验利用射频磁控溅射法在重掺硅上沉积了Bi2O3薄膜,并对该薄膜的结晶状态和Au/Bi2O3/n+Si/Al结构的电阻开关特性进行了研究.XRD分析结果表明,射频磁控溅射法沉积所得的Bi2O3薄膜结晶性能好,(201)取向明显.I-V曲线测试结果表明,Au/Bi2O3/n+Si/Al结构具有单极性电阻开关特性.通过对不同厚度Bi2O3薄膜的Au/Bi2O3/n+Si/Al结构I-V特性比较发现,随着薄膜厚度的增加,电阻开关的Forming、Set和Reset阈值电压均随之增加.对于Bi2O3薄膜厚度为31.2 nm的Au/Bi2O3/n+Si/Al结构,其Forming、Set和Reset阈值电压均低于4 V,符合存储器低电压工作的要求.  相似文献   

7.
This study investigates the characteristics of the planar twin poly-Si thin film transistor (TFT) EEPROM that utilizes a nitride (Si3N4) charge trapping layer. A comparison is made of two devices with different gate dielectrics, one a 16 nm-thick oxide (SiO2) layer for O-structure and the other 5 nm/10 nm-thick oxide/nitride layers for O/N-structure. Incorporating a nitride charge trapping layer and reducing the tunneling oxide thickness enable the O/N-structure EEPROM to enhance the program/erase (P/E) efficiency. Additionally, EEPROM formed with the tri-gate nanowires (NWs) structure can further enhance P/E efficiency and a large memory window because of its high electric field across the tunneling oxide. Reliability results indicated that, since the nitride layer contains discrete traps, the memory window can be maintained 2.2 V after 10(4) P/E cycles. For retention, the memory window can be maintained 1.9 V, and 30% charge loss for ten years of data storage. This investigation indicates that its possibility in future system-on-panel (SOP) of thin-film transistor liquid crystal display (TFTLCD) and 3-D stacked high-density Flash memory applications.  相似文献   

8.
Biological synapses store and process information simultaneously by tuning the connection between two neighboring neurons. Such functionality inspires the task of hardware implementation of neuromorphic computing systems. Ionic/electronic hybrid three‐terminal memristive devices, in which the channel conductance can be modulated according to the history of applied voltage and current, provide a more promising way of emulating synapses by a substantial reduction in complexity and energy consumption. 2D van der Waals materials with single or few layers of crystal unit cells have been a widespread innovation in three‐terminal electronic devices. However, less attention has been paid to 2D transition‐metal oxides, which have good stability and technique compatibility. Here, nanoscale three‐terminal memristive transistors based on quasi‐2D α‐phase molybdenum oxide (α‐MoO3) to emulate biological synapses are presented. The essential synaptic behaviors, such as excitatory postsynaptic current, depression and potentiation of synaptic weight, and paired‐pulse facilitation, as well as the transition of short‐term plasticity to long‐term potentiation, are demonstrated in the three‐terminal devices. These results provide an insight into the potential application of 2D transition‐metal oxides for synaptic devices with high scaling ability, low energy consumption, and high processing efficiency.  相似文献   

9.
由于高频软磁薄膜材料具有巨大的应用前景因此获得了人们广泛的关注。对纳米合金软磁薄膜、纳米软磁颗粒膜、多层膜以及图形化薄膜进行了分类综述,分别介绍了各类薄膜的制备方法、化学成分、微观结构特点和高频物理性能,并对影响其性能的主要因素进行了讨论。由于纳米高频软磁薄膜材料相对于传统磁性材料具有显著优势,所以纳米合金软磁薄膜有望取代铁氧体作为制作高频磁性器件的主要应用材料。由于纳米软磁颗粒膜、多层膜以及新兴的图形化薄膜具有材料结构设计和物性剪裁的自由度,因此将是今后的重点研究方向。  相似文献   

10.
We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage. The addition of two Ca layers, leading to a Ca/Ag/Ca base, allowed to obtain a large value of common-emitter current gain, but still retaining the permeable-base transistor character. This kind of vertical devices produced by simple technologies offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon-based devices.  相似文献   

11.
Si0.5Geo0.5 nanowires have been utilized to fabricate source-drain channels of p-type field effect transistors (p-FETs). These transistors were fabricated using two methods, focused ion beam (FIB) and electron beam lithography (EBL). The electrical analyses of these devices show field effect transistor characteristics. The boron-doped SiGe p-FETs with a high-k (HfO2) insulator and Pt electrodes, made via FIB produced devices with effective hole mobilities of about 50 cm2V(-1)s(-1). Similar transistors with Ti/Au electrodes made via EBL had effective hole mobilities of about 350 cm2V(-1)s(-1).  相似文献   

12.
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 × 10−2 Ω cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide.  相似文献   

13.
This study examined the characteristics of Ga:In2O3 (IGO) co-sputtered Zn:In2O3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In2O3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 × 10− 4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO4 layer.  相似文献   

14.
Transparent mixed phase (1- x)V205-xTiO2 (x=0,0.1,0.2,0.3,0.4) thin films were prepared on indium tin oxide (ITO) coated glass via sol-gel process. The films were characterized by cyclic voltammetry, optical spectroscopy, scanning electron microscopy, IR and X-ray diffractometer.  相似文献   

15.
本文采用ZnO忆阻器模拟了生物神经突触的记忆和学习功能。ZnO突触器件表现出典型的随时间指数衰减的突触后兴奋电流(EPSC),以及EPSC的双脉冲增强行为。在此基础上,实现了学习-遗忘-再学习的经验式学习行为,以及四种不同种类的电脉冲时刻依赖可塑性学习规则。ZnO突触器件实现了超低能耗操作,单次突触行为能耗最低为1.6pJ,表明其可以用来构筑未来的人工神经网络硬件系统,最终开发出与人脑结构类似的认知型计算机以及类人机器人。  相似文献   

16.
We report strategies to achieve both high assembly yield of carbon nanotubes at selected positions of the circuit via dielectrophoresis (DEP) and field effect transistor (FET) yield using an aqueous solution of semiconducting-enriched single-walled carbon nanotubes (s-SWNTs). When the DEP parameters were optimized for the assembly of individual s-SWNTs, 97% of the devices showed FET behavior with a maximum mobility of 210 cm2 V(-1) s(-1), on-off current ratio ~10(6) and on-conductance up to 3 μS, but with an assembly yield of only 33%. As the DEP parameters were optimized so that one to five s-SWNTs are connected per electrode pair, the assembly yield was almost 90%, with ~90% of these assembled devices demonstrating FET behavior. Further optimization gave an assembly yield of 100% with up to 10 SWNTs per site, but with a reduced FET yield of 59%. Improved FET performance including higher current on-off ratio and high switching speed were obtained by integrating a local Al2O3 gate to the device. Our 90% FET with 90% assembly yield is the highest reported so far for carbon nanotube devices. Our study provides a pathway which could become a general approach for the high yield fabrication of complementary metal oxide semiconductor (CMOS)-compatible carbon nanotube FETs.  相似文献   

17.
Indium-doped zinc oxide (IZO) films were fabricated by radio-frequency magnetron sputtering. The effects of hydrogen annealing on the structural, optical and electrical properties of the IZO films were investigated. The hydrogen annealing may deteriorate the crystallinity of the films. The surfaces of the films would be damaged when the annealing temperature was higher than 350 °C. After the annealing, the surface roughness of the films would decrease, and high transparency of 80–90% in the visible and near-infrared wavelength would be kept. Meanwhile, the resistivity decreased from 1.25 × 10−3 Ωcm of the deposited films to 6.70 × 10−4 Ωcm of the annealed films. The work function of the IZO films may be modulated between 4.6 and 4.98 eV by varying the hydrogen annealing temperature and duration.  相似文献   

18.
Nano In-doped ZnO (IZO) films were deposited on glass substrates by RF magnetron sputtering from a powder target (2at% In) at different substrate temperatures. The thermoelectric and magnetothermoelectric properties of the IZO films were investigated. It shows that the prepared IZO films are c-axis oriented, the grain size is about 22–29 nm, and both the thermoeletromotive force (thermo-emf) and the magneto thermo-emf change linearly with temperature difference, implying that a striking thermoelectric (Seebeck) effect and magnetothermoelectric effect can be apparently observed in IZO films. The thermo-emf is negative, the Seebeck coefficient is about −57, −32, −40 and −66 μV/K for samples deposited at the substrate temperature of room temperature, 100, 200, 300°C, respectively. The power factor is (3.11–5.89)×10−5 W/K2 m for our thin films. The absolute value of the magnetothermo-emf is smaller than the thermo-emf without a magnetic field, showing that the magnetic field has a negative effect on the Seebeck coefficient, which can be explained by the magnetoresistive effect substantially.  相似文献   

19.
Kim WH  Park SJ  Son JY  Kim H 《Nanotechnology》2008,19(4):045302
We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100?nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.  相似文献   

20.
We have investigated the effect of electron beam irradiation as well as insertion of a Ag layer on the electrical and optical properties of the ITO or IZO films. The results show that electron beam irradiation as well as inserting a very thin Ag layer can significantly reduce sheet resistance of the ITO/Ag/ITO and IZO/Ag/IZO films. The electron beam irradiation also increases light transmittance and optical band gap of the ITO/Ag/ITO multilayer films; meanwhile, it has not influence on the transmittance of the IZO/Ag/IZO films. These results can be explained by that In and Zn cation in IZO film have strong tendency to preserve their coordination with oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号