首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了成分为Mg-1.5Zn-xY和Mg-1.5Zn-xCe(x=0,0.2,0.5,1.0)两组试样。通过光学显微镜、扫描电镜、X衍射等研究稀土Y和Ce对热轧态Mg-1.5Zn合金组织和室温成形性能的影响。结果表明:Y和Ce元素可以有效地弱化合金的(0002)基面织构,而且基面织构均沿着TD方向发生一定程度的分裂。Y和Ce元素的加入,使合金中分别形成了Mg2Y5,Mg3Zn3Y和MgZnCe弥散的第二相粒子,起到了细晶强化作用。此外,还有利于合金再结晶行为的发生,使得合金塑性(伸长率最高达27%)、强度(抗拉强度最高达252MPa)和室温成形性能(杯突值最高可达5.46)都得到很大提高。但是,过多Y和Ce的加入将不利于合金性能的进一步提高。  相似文献   

2.
进行Al-5.4Zn-2.6Mg-1.4Cu合金板材的室温低周疲劳实验,对比研究了轴向平行于轧制方向(RD方向)和垂直于轧制方向(TD方向)试样的低周疲劳行为。结果表明:对于0.4%~0.8%的外加总应变幅,RD和TD方向合金试样的循环应力响应行为均呈现出循环稳定;对于相同的外加总应变幅,TD方向合金的循环应力幅值高于RD方向,而RD方向合金的疲劳寿命高于TD方向。对于RD和TD方向,Al-5.4Zn-2.6Mg-1.4Cu合金的塑性应变幅、弹性应变幅与载荷反向周次均呈线性关系。在低周疲劳加载条件下,裂纹在疲劳试样的自由表面以穿晶方式萌生和扩展。  相似文献   

3.
晶粒细化可以有效改善镁合金的力学性能.基于此,以Mg-1.5Zn-0.2Ca合金作为研究对象,通过中低温挤压变形工艺对Mg-1.5Zn-0.2Ca合金组织进行调控,进而对其变形后的组织及性能进行分析.结果表明:随着挤压温度降低,Mg-1.5Zn-0.2Ca合金的塑性变形机制发生转变,变形后的晶粒尺寸逐渐减小,综合力学性能增强.280℃挤压变形时,合金以基面滑移及孪生协调变形为主,动态再结晶后的平均晶粒尺寸约为5.3μm,此时合金的屈服强度为95 MPa,抗拉强度为186 MPa,延伸率为22%.  相似文献   

4.
通过不同的加工工艺制备具有不同晶粒尺寸和织构的AZ31镁合金板材,通过室温埃里克森试验研究了工艺因素对提高镁合金板材室温成形性能的影响。结果表明:增大晶粒尺寸,减弱基面织构,可以改善镁合金轧板在变形过程中产生的在轧制方向的硬取向,增大镁合金轧板的延伸率,从而提高镁合金室温成形性能;用异步轧制工艺(轧制和退火温度为400℃、异速比为1.5)制备的试样晶粒尺寸增大到20μm、(0002)极图最大极密度仅为2,室温杯突实验测得IE值达到了5.71,显著提高了材料室温成形性能。  相似文献   

5.
利用光学显微镜和扫描电子显微镜分析了热轧态及退火态Mg-3Zn-2Gd合金的组织,并测试了其室温拉伸力学性能。结果表明:合金板材经应变为23%~67%的轧制后组织得到细化,平均晶粒尺寸由10μm减至轧制应变为67%时的4μm。初始组织中的大量孪晶和剪切带逐渐减少;随着轧制应变增至67%,剪切带消失,组织由动态再结晶晶粒和少量孪晶组成。拉伸力学性能显著提高,抗拉强度σb和屈服强度σ0.2分别由未轧制时的255 MPa和215 MPa提高至轧制应变为67%时的305 MPa和300 MPa,而伸长率δ先提高后降低。再经573 K退火处理1 h后,合金组织发生静态再结晶,变形不均匀区域消失,由细小均匀等轴晶组成;σb和σ0.2分别降至265 MPa和235 MPa,δ提高至19.0%;拉伸断口呈现大量韧窝,表现为韧性断裂。  相似文献   

6.
采用等温热处理法制备了Mg-7Zn-0.2Ti-xCu(x=0、0.5、1.0、1.5,质量分数/%)合金的半固态坯料,探讨了Cu元素及其含量对Mg-7Zn-0.2Ti-xCu合金铸态和半固态组织的影响,同时,研究了等温温度和保温时间对Mg-7Zn-0.2Ti-1Cu合金半固态组织演变的影响并分析了非枝晶组织的形成机理。结果表明:在半固态组织演变过程中,随着等温温度的升高和保温时间的延长,固相颗粒的尺寸和形状因子先减小后增大。铸态组织和溶质原子的扩散行为是影响等温热处理过程中非枝晶组织形貌及其演变的主要因素。当Cu含量为1.0%(质量分数)时,合金铸态组织细小,Cu对非枝晶组织的优化效果最佳。Mg-7Zn-0.2Ti-1Cu合金在600℃下保温30 min时获得的非枝晶组织较为理想,其固相颗粒的平均尺寸、形状因子和固相率分别为43.12μm、1.46和59.77%,满足半固态成形的要求。  相似文献   

7.
程鹏  陈云贵  丁武成  王春明 《材料导报》2018,32(20):3562-3565
研究了添加Cu对热挤压Mg-3Sn-1Zn合金显微组织和力学性能的影响。结果表明:添加少量Cu能显著细化热挤压Mg-3Sn-1Zn合金晶粒,同时在合金中形成具有高热稳定性的CuMgZn相,提高了合金的室温及高温强度和塑性。当Cu含量为0.5%时,热挤压Mg-3Sn-1Zn-0.5Cu合金的晶粒最细,为2.8 μm;其强度和塑性最高,室温屈服强度为241 MPa,伸长率为20.3%,150 ℃时屈服强度为128 MPa,室温拉伸力学性能优于挤压态AZ31B合金,高温强度优于铸态AE42合金。  相似文献   

8.
研究了一种Ti—IF(Interstitial—free)钢在铁素体区热轧和退火过程中织构的变化.由于轧制过程摩擦的影响,热轧织构和退火织构在厚度方向上都有很大的差异.在钢板的表层,热轧织构的主要组分是{110}(001),退火后表层的铁素体晶粒没有发生再结晶,该组分转变为(001)(110);在试样的中心和1/4面,热轧织构组分主要是较弱的(111)//ND(板法向)织构和部分(110)//RD且在{001}(110)处最强;退火后中心面上的晶粒发生了完全再结晶,{001}组分转变为(111)//ND组分使(111)//ND织构成为唯一织构组分且在{111}(112)处最强.  相似文献   

9.
目的 通过显微组织表征和拉伸性能测试等方法,研究轧制温度、多道次累积压下率及轧制路径对ZK60镁合金组织演变和力学性能的影响。方法 通过在不同温度(300、340、380、420℃)与同一多道次累积压下率下进行轧制实验,明确了后续轧制实验的轧制温度。随后在同一温度、单个道次压下率为10%、不同累积压下率下进行多道次单向轧制及交叉轧制实验,并对轧制后试样的力学性能及微观组织进行分析。结果 当轧制温度为380℃、累积压下率为40.1%时,材料动态再结晶程度最大,平均晶粒尺寸减小为15.48μm,合金抗拉强度和断后伸长率最大,分别为301.46 MPa和20.56%。与多道次单向轧制相比,交叉轧制后合金板材基面织构强度明显降低,极密度值降低为9。材料RD方向的抗拉强度提高了6.35%,断后伸长率没有明显变化,TD方向的抗拉强度略微下降,但断后伸长率提高了71.47%,TD方向由脆性断裂转为韧性断裂。结论 随着温度与累积压下率的上升,ZK60镁合金的动态再结晶程度提高,晶粒得到细化,材料力学性能得到提升。在相同温度与累积压下率下,经交叉轧制后,材料基面织构显著削弱,材料的各向异性得到改善。  相似文献   

10.
研究了激光沉积打印Ti55511钛合金的显微组织和室温拉伸性能,表征了打印态、热处理态Ti55511合金的晶粒形态及晶体学织构,分析了不同退火热处理温度对激光增材制造钛合金强塑性的影响。结果表明,原始打印态Ti55511钛合金由粗大的β晶粒组成,并且β晶粒以柱状晶和等轴晶两种类型的晶粒交替生长,呈现竹节状形态。在打印态Ti55511组织中,β基体析出的α片层提供了大量的界面,有效阻碍了位错运动,使合金具有高强度和低塑性。580℃退火热处理后,合金的屈服强度、抗拉强度变化不明显,伸长率有一定的提升。进一步提高退火温度至620℃后,合金的屈服强度、抗拉强度降低,但强度值依然大于1 000 MPa,同时伸长率大幅提升。因此,可通过退火热处理调控α晶粒的尺寸和体积分数,以提高合金的强塑性匹配。当应力平行于Z方向时,样品的屈服强度、抗拉强度略低于垂直于Z方向的,而伸长率显著高于应力垂直于Z方向的。  相似文献   

11.
AlSi10Mg合金具有高比强度、高耐磨性等优良特点。由于其成分接近共晶点,成形性能良好,被广泛应用于激光选区熔化技术。然而其热处理制度仍然沿用传统铸态合金的热处理规范,影响了其性能的充分发挥。本工作采用激光选区熔化技术制备了AlSi10Mg合金,并研究了沉积态和后续热处理过程中组织演化规律及其对室温力学性能的影响机制。研究发现:沉积态组织由沿沉积方向生长的α-Al柱状枝晶及枝晶间网状Al-Si共晶组成,具有强烈的〈100〉方向织构,沉积层由三部分组成,分别是细晶区、粗晶区及热影响区,抗拉强度389.5 MPa,伸长率4%。退火过程中,共晶Si破碎、球化,基体中过饱和Si不断析出长大。当退火温度从200 ℃提高到500 ℃时,Si颗粒发生Ostwald熟化,平均尺寸增长了23倍。经过300 ℃和500 ℃退火处理后,试样抗拉强度分别为287.0 MPa和268.0 MPa,但伸长率分别提高到10.3%和17.2%。  相似文献   

12.
为了制备高塑性镁合金无缝管材,将具有不同初始组织的Mg-3%Gd-1%Zn(质量分数/%,以下简称GZ31)合金空心锭在420~480℃挤压成无缝管材,采用金相显微镜、扫描电镜、X射线衍射分析和拉伸试验等表征了管材的组织和力学性能.结果表明:GZ31镁合金无缝管材较AZ31具有更弱的基面纤维织构;420℃一次挤压成形的GZ31管材由于组织中还存在粗大的原始晶粒,导致室温伸长率较低;440℃及以上挤压时得到完全再结晶组织,且随挤压温度升高,再结晶晶粒和第二相尺寸逐渐增大;经过一次挤压开坯后再在440℃二次挤压的无缝管材具有更细小的平均晶粒尺寸(约12μm),其室温伸长率高达35%,明显优于传统AZ31以及一次挤压成形的GZ31镁合金无缝管材.  相似文献   

13.
目的 制备双峰织构类型的AZ31镁合金板,以改善板材微观组织和弱化基面织构,研究微观组织对力学性能各向异性的影响规律,以提高镁合金板材的成形性能。方法 通过弯曲限宽矫直技术对0°、30°和60°轧向切样的板材进行热加工以预制拉伸孪晶,获得双峰织构类型的AZ31镁合金板材,通过EBSD获取板材的微观组织。对RD、45°和TD方向的原始板材进行室温单向拉伸实验,获得板材的工程应力-应变曲线及力学性能参数,并计算r值(塑性应变比)与n值(应变硬化指数)。结果 弯曲限宽矫直技术可诱发大量拉伸孪晶形成ED偏转织构,将偏转织构与基面织构共存的板材称为双峰织构类型AZ31镁合金板材。拉伸孪晶的出现显著细化了晶粒,弱化了基面织构强度,使板材的屈服强度下降,极大提升了材料塑性。其中30°轧向切样的板材ND面塑性力学性能各向异性的改善效果最好,其r值最小、n值最大。结论 双峰织构类型能够弱化AZ31镁合金板材基面的织构强度,提高材料塑性。拉伸孪晶含量越高,板材的强度与塑性越好,力学性能各向异性的改善效果也越显著。  相似文献   

14.
800MPa冷轧热镀锌双相钢组织性能及其织构演变   总被引:1,自引:0,他引:1  
对800MPa级热镀锌双相钢热轧、冷轧及退火后的显微组织进行了观察,分析比较了热轧和退火后的力学性能,并考察了其织构演变过程.结果表明:实验用钢经820℃保温140s热镀锌退火后,可获得抗拉强度819MPa,伸长率为17%的铁素体+马氏体双相钢,铁素体晶粒尺寸在1.5~4μm之间,马氏体体积分数为34%左右;热轧织构密度较弱,但已呈现出γ织构的雏形;冷轧后α织构和γ织构密度显著增长;热镀锌退火后α织构变化不大,不利织构{001}〈110〉织构密度有较大程度地攀升,γ织构取向密度值波动很大,最大织构组分为{112}〈110〉织构;快冷过程中形成的马氏体阻碍了有利织构{111}的发展,使得不利织构{001}〈110〉得到一定程度的发展.  相似文献   

15.
研究了在1000,940,850 ℃不同温度热轧的TC20合金坯料在冷连轧过程中的变形与失稳情况,结合热轧棒材组织和室温压缩的实验结果,表明:热轧温度越低,冷轧成形性越差。850 ℃热轧的TC20合金棒坯纵向组织中α相呈连续纤维状,冷连轧成形性比较差,极限变形量仅40%左右;1000 ℃的热轧坯料组织中β相占比增加,冷连轧变形量可以达到60%,同时,其室温压缩实验过程中断裂压缩率高,塑性变形阶段加工硬化速率较小。通过室温压缩实验可直观评价TC20合金丝材的冷轧成形性能。  相似文献   

16.
通过分析组织和织构研究了Ti75合金板材拉伸性能和冲击韧性的各向异性。结果表明,Ti75板材横向(transverse direction,TD)的抗拉强度、屈服强度、伸长率和冲击韧性均优于轧向(rolling direction,RD)的对应指标。由于板材横向的屈服强度远大于轧向的屈服强度,使得板材横向屈强比(Rp0.2/Rm)远大于轧向的屈强比。Ti75板材为B/T(basal/transverse)织构类型,主要织构组分为{0002}1120(B织构)、{1013}1120(B31织构)和{1120}1010(T织构),织构造成横向和轧向拉伸时棱柱面滑移的Schmid因子不同。Ti75板材横轧向屈服强度的差异主要与织构引起晶粒滑移系启动的难易不同有关,抗拉强度主要取决于元素的强化作用,主要影响因素的不同造成了板材不同方向屈强比存在较大的差异。  相似文献   

17.
高杰明  黄晖  石薇  魏午  文胜平  韩颖  聂祚仁 《材料工程》2022,50(11):101-108
使用硬度测量、室温拉伸、光学显微镜(OM)、电子背散射衍射(EBSD)、透射电镜(TEM)等测试方法,对不同退火处理的Al-6.0Mg-1.0Zn-0.8Mn-0.2Cu-0.2Er-0.1Zr热轧板的室温拉伸性能、晶间腐蚀性能和合金的宏微观组织进行了系统研究。结果表明:合金板材的稳定化工艺窗口为230℃/18 h,240℃/6 h,250~270℃/2 h;在250℃/2 h退火后,合金板材的屈服强度为263 MPa,失重值为6.732 mg/cm2。结合力学性能和腐蚀性能,优选250℃/2 h为热轧板的最佳稳定化工艺。通过选区电子衍射和能谱图分析,发现晶界与晶内的析出相均为T-Mg32(AlZn)49相。经过250℃/2 h退火后,晶内T相逐渐长大回溶,形貌由方块状转变为短棒状。而T相在晶界处呈断续分布,且间距变大,所以呈现良好的耐蚀性。  相似文献   

18.
对用电子束冷床炉(EB炉)熔炼的TC4钛合金热轧板材进行三火轧制变形,研究了退火温度对其显微组织、织构和力学性能的影响。结果表明:TC4钛合金的原始轧态组织为双态组织,由初生α相和β转变组织构成。退火后等轴α相的含量提高,次生α相的含量降低并趋于球化,组织的等轴化程度提高,在900℃退火后合金的显微组织转变为等轴组织。随着退火温度的提高α相晶粒的偏聚方向发生了变化,织构类型由初始的B型织构转变为B型织构与T型织构的混合织构类型,最终再转变为B型织构。在800℃退火后α晶粒的择优取向最弱,其织构类型为B型织构和T型织构组成的混合织构,较强织构的成分为:φ2=0°截面,■;φ2=30°截面,■。对材料进行室温和高温(400℃)拉伸实验,可得到TC4钛合金强度及塑性与退火温度间的关系:退火温度的提高使合金的抗拉强度提高、屈服强度降低、改善了塑性,合金屈强比的降低使其可靠性提高。  相似文献   

19.
代帅  王峰  王志  刘正  毛萍莉 《材料研究学报》2019,33(12):881-891
采用金属型铸造方法制备ZK60及ZK60+1.0Cu(质量分数,%)合金,并对两种合金进行均匀化热处理与两步复合挤压剪切成形。利用OM、SEM、EDS、XRD、EBSD、TEM及室温拉伸-压缩实验研究了挤压剪切合金的显微组织、相组成及力学性能。结果表明:向ZK60合金中加入1.0Cu后,合金α-Mg基体中出现三元MgZnCu相。ZK60+1.0Cu合金成形区平均晶粒尺寸为1.56 μm,其远小于ZK60合金(4.68 μm),且MgZnCu相附近存在着尺寸为300±45 nm的亚晶粒。相比于ZK60合金,ZK60+1.0Cu合金成形区拥有着较弱的{0001}基面织构,且织构基极和挤压方向(ED)夹角发生转变,造成ZK60+1.0Cu合金成形区中存在着更多易于{0001}<112ˉ0>基面滑移启动的动态再结晶(DRX)晶粒。ZK60+1.0Cu合金成形区的拉伸及压缩强度明显高于ZK60合金,其主要归因于晶界强化,而拉伸伸长率的降低和硬质MgZnCu相带来的微孔聚集有关。  相似文献   

20.
快速凝固/粉末冶金法制备ZK60高强镁合金   总被引:1,自引:0,他引:1  
采用快速凝固/粉末冶金法(RS/PM)制备块体ZK60(Mg-5.52Zn-0.33Zr,质量分数/%)镁合金,研究了挤压态合金在200,300℃退火1h后微观组织和力学性能的变化.结果表明:挤压致密化过程中,合金粉末颗粒在剪切力作用下被拉长,内部晶粒碎化成小角度亚晶粒、位错胞和条带状亚晶,第二相纳米颗粒沿亚晶界随机分布;随后200℃退火后,组织发生不完全再结晶,位错密度有所降低;而在300℃退火后,合金组织发生完全再结晶,形成平均尺寸约2.5μm的等轴晶,同时晶内析出大量β2′相.挤压态合金的屈服强度和延伸率分别为394MPa,15.2%;随着退火温度的升高,强度略有下降,塑性提高,合金综合性能优异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号