首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Al含量对Al-Fe-Si/Al原位复合材料的影响   总被引:1,自引:0,他引:1  
采用粉末冶金瞬时液相烧结法制备Al-Fe-Si/Al原位复合材料。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析(EDS)以及M-2000型磨损试验机研究Al含量对原位复合材料的微观结构、硬度和耐磨性的影响。结果表明:随着Al含量的增加,粗大FeAl相消失,针状的金属间化合物增强体Al0.5FeSi0.5长大成短棒状。当Al质量分数为77%时,细小的短棒状Al0.5FeSi0.5增强相弥散分布在基体中,复合材料硬度HV具有最高值283.7,其硬度约是纯铝的8倍,铝硅合金的2.5倍;复合材料的耐磨性约为纯铝的6.6倍,铝硅合金的4.5倍;耐磨性能最佳,磨损率为0.3781%,磨损机制为磨粒磨损。  相似文献   

2.
反应自生Al2O3-Al3Ti-Al 复合材料的抗弯曲性能   总被引:7,自引:1,他引:6       下载免费PDF全文
将压力铸造(Squeeze-Casting) 与燃烧合成(Combustion-Synthesis) 相结合, 利用TiO2与Al 之间的反应, 成功地制备了金属相Al 含量不同的Al2O3-Al3Ti-Al 原位复合材料系列。运用三点弯曲方法测试了复合材料的抗弯曲强度和弹性模量。结果表明: 复合材料具有较高的弯曲强度(410~ 490M Pa) 和弹性模量(156~ 216GPa) , 随着金属相Al 含量的增加, 弯曲强度开始有所升高,当A l 体积百分数超过40% 后便明显下降。而弹性模量始终呈降低趋势, 复合材料的高强度源于反应生成细小的Al2O3颗粒及Al3Ti 相的增强作用。   相似文献   

3.
原位自生Ti3 Al金属间化合物基复合材料的微观结构   总被引:1,自引:1,他引:0  
采用原位自生(XD)法制备Ti3Al金属间化合物基复合材料,对复合材料的XRD,OM和SEM的分析结果表明,Ti-17Al-0.5C复合材料的基体为Ti3Al,增强相为Ti3AlC,且增强相在基体中按一定的方位排列,Ti-17Al-1.5(2.0)C复合材料的基体为Ti3Al,增强相由心部TiC矣包覆层Ti3AlC双层组成,随着含C量的增加,增强相由不发达的树脂晶变为等轴晶,对合金进行微力学探针测试表明,增强相TiC和Ti3AlC的显微硬度和弹性模量均大于基体Ti3Al,随着C含量的增加,合金中增强相和基体的显微硬度和弹性模量无明显变化。  相似文献   

4.
以Al-SiO_2为反应体系,通过烧结反应原位合成了(Al_2O_3+Si)_p/Al复合材料。研究了第二相含量、烧结时间以及热锻压等工艺对(Al_2O_3+Si)_p/Al复合材料的第二相形貌、尺寸及分布的影响,探讨了原位合成(Al_2O_3+Si)_p/Al复合材料的生成机制。研究表明,Si相含量随着第二相含量的增多而增多且与Al和Al_2O_3相界限相对明显;随着烧结时间的延长,Si相面积相对减小,Al_2O_3相的数量相对增加;锻压后,Si相和Al_2O_3分布更加均匀且尺寸减小。复合材料在液相烧结的过程中,高温下的液相粘性流动以及在原位反应时发生的颗粒重排与固相的溶解和沉淀对材料的致密化产生了较大的作用,当烧结温度达到1000℃时,Al_2O_3颗粒数量、分布情况都得到明显地改善。  相似文献   

5.
利用超声振动辅助铸造法制备了Al-Cr/Al原位复合材料,应用XRD、SEM以及能谱分析(EDS)研究了复合材料的微观结构。通过M-2000型磨损试验机研究了Al-Cr/Al原位自生复合材料的耐磨性能。结果表明,超声振动对原位增强体细化明显,随着Cr含量的增加,原位增强体含量增加,增强体尺寸增大。不同类型的Al-Cr金属间化合物在基体中同时生成,形成混合增强相;随着Cr粉末粒径增大,原位增强体尺寸具有最小值。随着Cr含量和粒径的增大,复合材料的磨损率呈先降低后升高的趋势。Cr含量为8%,粒径为75μm时,复合材料的磨损率最小,为0.294%,耐磨性能最好,相对纯铝耐磨性提高约8.5倍,磨损机制主要为磨粒磨损。  相似文献   

6.
采用接触反应法制备了原位自生Ti Cp/6061复合材料,利用XRD和SEM对复合材料进行物相分析及微观形貌观察,用6061铝合金基体材料作为对比,研究了增强粒子含量对复合材料硬度和摩擦磨损行为的影响。结果表明,采用接触反应法,以Ti粉、C粉和Al粉作为生成Ti C增强相的原材料,可直接在6061铝合金基体中原位生成Ti C颗粒,Ti C颗粒呈规则多边形,尺寸为0. 5~1μm。随着增强粒子含量的增加,原位自生Ti Cp/6061复合材料的硬度明显提高,T6热处理后5%(质量分数)的Ti Cp/6061复合材料的硬度为120. 5HBS,比基体6061铝合金提高了28. 1%。这是Ti C颗粒对6061基体材料的位错强化和细晶强化综合作用的结果。此外,随着增强粒子含量的提高,原位自生Ti Cp/6061复合材料的耐磨性也增强; T6热处理后,在100 N恒压作用下与GCR15材料对磨300 s,基体6061铝合金失重是5%(质量分数) Ti Cp/6061复合材料的2倍。其原因在于Ti C颗粒含量的提高减小了对磨材料与复合材料的有效接触面积,从而增强了原位自生Ti Cp/6061复合材料的耐磨性能。  相似文献   

7.
高淑雅  吕磊  郭晓琛  孔祥朝 《功能材料》2012,43(13):1696-1699,1703
以莫来石纤维为增强体,采用固相烧结法制备了莫来石纤维增强多孔玻璃基复合材料。研究了烧结温度和保温时间对多孔玻璃复合材料的微观结构和性能的影响。采用SEM、XRD等检测手段对复合材料的物相结构及断面的微观形貌进行测试,采用阿基米德法测量其密度,使用万能材料试验机测量其抗折强度。结果表明,随着发泡温度升高、保温时间延长,多孔玻璃的孔径增大,但发泡温度过高或保温时间过长易产生连通孔;抗折强度、密度随着发泡温度的升高或保温时间的延长而降低。当发泡温度为840℃,保温时间为20min时,比强度达到最大值为0.013m2/s2。  相似文献   

8.
在NiTi合金中添加少量Al、Nb、Hf强化元素, 采用定向凝固原位自生法制备了一种NiTi基自生复合材料, 并在950 ℃对定向凝固棒分别进行了12 h、50 h及100 h的均匀化热处理, 对热处理后的试样进行了室温抗拉强度测试。结果表明, 定向凝固组织为沿[001]方向生长的细小的棒状胞晶组织, β-Nb相和Ti2Ni相增强体颗粒沿NiTi胞晶间的[001]方向排列。随热处理时间的延长, 胞晶尺寸逐渐粗化, 两增强相粒子分布更加弥散均匀。热处理后NiTi基自生复合材料的最大抗拉强度达到1972 MPa, 超过了4130和8640超高强度钢, 与4140和4340超高强度钢的强度基本相当, 达到或超过了多种国内外现役的超高强度钛合金。  相似文献   

9.
自生法制备纳米-微米颗粒增强B4C基复合材料   总被引:7,自引:0,他引:7  
丁硕  温广武  雷廷权  周玉 《材料工程》2002,(5):14-17,21
采用原位自生法设计并制备了一种新型纳米-微米颗粒增强B4C基复合材料:Al2O3-TiB2/B4C.理论计算和实验证明,可在相对较低的温度(1950℃)下成功实现预期的原位反应,得到完全致密化的复合材料.复合材料中生成细小均匀的微米级Al2O3和TiB2颗粒增强相,并在B4C晶粒内部形成Al2O3纳米颗粒增强相,得到晶间/晶内复合增强的组织结构.复合材料具有优异的综合力学性能,维氏硬度值达到28.8GPa,断裂韧性高达8.27 MPam1/2,耐磨性能大幅提高,K IC3/4*HV1/2达到26,是一种很有发展潜力的复合材料.还探讨了该种纳米-微米颗粒增强复合材料的韧化机制.  相似文献   

10.
分别通过超声共混法和原位还原法制备了石墨烯/环氧树脂复合材料。利用X射线光电子能谱(XPS)、X射线衍射(XRD)、光学显微镜和扫描电子显微镜(SEM)对复合材料的结构进行了表征,并对其力学性能进行了测试。结果表明,原位还原法制备的石墨烯/环氧树脂复合材料中,氧化石墨烯已经被成功地还原为石墨烯,并且石墨烯具有良好的分散性。力学性能测试结果表明,两种方法制备的复合材料的力学强度较纯环氧树脂明显提高。当石墨烯的量为m(GO)/m(EP)=0.3/100时,超声混合法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约29.2%和1.4%;而原位还原法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约40.5%和9.4%。  相似文献   

11.
将M40J碳纤维(Cf)以叠层缝合结构编织成预制体,采用真空气压浸渗工艺制备成Cf/Al复合材料。在高温环境(350℃、400℃)下进行三点弯曲测试试验,通过SEM、TEM、EDS和XRD对材料的元素分布、物相组成、微观组织和界面特征进行观察分析,研究其高温弯曲性能,探讨该种材料在高温环境下弯曲失效机制。结果表明,制备的Cf/Al复合材料基体与增强体界面轮廓清晰且结合紧密,材料内部基体受残余拉应力。Cf/Al复合材料在350℃时的弯曲强度和模量分别为175.2 MPa和90.1 GPa,在400℃时为160.8 MPa和87.5 GPa;温度升高时叠层缝合结构Cf/Al复合材料的弯曲强度未出现大比例下降,其高温稳定性较其他编织结构更好。Cf/Al复合材料在高温环境下弯曲失效时受拉伸、压缩共同作用,其失效方式是基体开裂及部分纤维断裂,主导因素为基体在高温下软化和材料界面结合强度下降。   相似文献   

12.
ZrB2-SiC复相陶瓷在超高温领域具有重要的应用前景,但韧性低限制了其应用.本工作通过原位反应烧结制备出Zr2 Al4 C5化合物增韧ZrB2-SiC复相陶瓷,研究了Zr/Al物质的量比和烧结工艺对复相陶瓷的烧结性能、显微结构和力学性能的影响.结果表明:随着Zr/Al物质的量比的减小,原位反应合成的Zr2 Al4 C5化合物逐渐增多;随着烧结温度的升高,Zr2 Al4 C5化合物逐渐反应合成;随着烧结压力的增加和保温时间的延长,复相陶瓷主要相成分为ZrB2、SiC和Zr2 Al4 C5,开气孔率呈现下降的趋势,断裂韧性呈现先增加后降低的趋势.采用Zr/Al物质的量比2:6、烧结温度1800℃、烧结压力20 MPa、保温时间3 min,通过SPS原位反应烧结制备的Zr2 Al4 C5化合物增韧ZrB2-SiC复相陶瓷,其断裂韧性可达(5.26±0.37)MPa·m1/2;韧化机理主要包括裂纹偏折、裂纹桥接、裂纹分叉以及层状Zr2Al4C5晶粒拔出等能量耗散机制.  相似文献   

13.
新型复式连通SiC/390Al复合材料的制备和性能   总被引:7,自引:0,他引:7  
以空心多孔SiC泡沫陶瓷为增强体,用挤压铸造法制备了新型复式连通双连续相SiC/390Al复合材料,研究了泡沫陶瓷骨架筋的结构对复合材料的影响,以及复合材料中的界面对力学性能的影响.结果表明,SiC空心多孔泡沫陶瓷与390Al复合后形成了复式连通双连续相复合材料,具有独特的互穿式界面结构,材料界面的结合优异.随着复合材料界面结合的加强和泡沫增强体的复合韧化,复合材料的屈服强度、压缩强度和弯曲强度明显提高,韧性显著增强.  相似文献   

14.
用熔融挤出一步法制备了原位形成官能团化聚丙烯(FPP)偶联Al(OH)3/PP复合材料,研究了原位形成FPP对Al(OH)3/PP复合材料的结晶与熔融行为,熔融指数,热降解行为,阻燃性能,力学性能和断裂形态等的影响。原位形成FPP使Al(OH)3/PP的结晶温度和熔点降低,熔融指数,拉伸和弯曲强度提高。但对热降解行为和氧指数影响不大。  相似文献   

15.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

16.
为改善原位颗粒增强镁基复合材料的性能,采用原位合成技术制备了Mg2Si/AZ91D复合材料,通过在熔体中施加高能超声,研究了超声时间和超声功率对复合材料组织性能的影响.结果表明:随着超声时间的延长或超声功率的增大,复合材料中粗大的汉字状Mg2Si相变得细小、分布均匀,同时细小分布均匀的球化状β-Mg17Al12相增多;超声时间为6 min、超声功率为1.2 kW时,组织中呈短棒状的Mg2Si颗粒和球化状β-Mg17Al12相分布均匀,且复合材料的抗拉强度和伸长率达到最大,分别为220.5 MPa和2.6%,较未施加超声的复合材料试样提高了22.3%和38.9%;再延长处理时间或增大输出功率,组织有粗化的趋势,复合材料的抗拉性能及伸长率也呈现先升后降趋势.  相似文献   

17.
以聚丙烯树脂(PP)为基体,剑麻纤维(SF)、玻璃纤维(GF)为增强材料。采用熔融共混、模压成型工艺制备PP/SF/GF复合材料。室温条件下,将试样在水中浸泡不同时间,分析其吸水率及性能的变化。结果表明,复合材料的吸水率均随浸泡时间的延长和SF/GF含量的增加而逐渐增加,其冲击强度和弯曲强度均随浸泡时间和SF/GF含量的增加呈下降趋势。同时,复合材料的热稳定性、PP相的结晶速率及结晶度也有所降低。  相似文献   

18.
采用熔铸法制备了原位自生Al2O3-TiCp/Al基复合材料。借助差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)等测试技术,对Al-TiO2-C体系的热力学进行了详尽的分析,讨论了过量铝对Al-TiO2-C体系反应的影响。结果表明,通过控制反应温度等工艺参数完全可以获得原位自生Al2O3-TiCp/Al基复合材料,避免副产物Al3Ti和Al4C3的产生。Al-TiO2-C体系原位合成Al2O3-TiCp/Al基复合材料存在着复杂的化学反应。首先在无过量铝的情况下,Al与TiO2发生置换反应,生成了Al2O3和游离态[Ti],而后游离态[Ti]与C结合生成TiC;而存在过量铝的情况下,首先发生铝热反应生成Al3Ti,进而Al3Ti与C结合生成TiC。最终完全获得Al2O3-TiCp/Al复合材料。随着过量Al含量由0增加至70%,Al与TiO2反应生成Al2O3的反应起始温度不断降低。  相似文献   

19.
用真空熔炼、惰性气体雾化法制备Ni-Cr-P金属粉末,再加入有机黏结剂高速搅拌,制备Ni14Cr10P膏状活性钎料。用制备好的焊膏真空钎焊C/C复合材料,测试钎焊接头的剪切强度,通过OM,SEM,EDS,XRD等对钎焊接头界面组织结构进行分析。结果表明:在钎焊温度1000℃、保温时间0.5 h条件下,获得的接头剪切强度达到28.6 MPa,然后随着钎焊温度上升或保温时间延长,钎焊接头强度下降;通过界面组织结构分析发现焊膏可以增加钎料层与C/C复合材料表面的接触面积,有利于堵塞C/C复合材料表面的孔隙。焊后在界面处形成了交错分布的Cr碳化物相缓冲层,使得界面呈现热膨胀系数梯度增加的结构,有助于缓解热失配,提高C/C复合材料钎焊接头强度。  相似文献   

20.
采用真空热压原位合成法制备Al3Ti增强Mg-Al基复合材料。研究了烧结工艺对复合材料显微结构的影响。探讨了Al3Ti的原位合成机制, 提出了Ti和Al的微观反应模型。采用XRD、 SEM等方法分析了复合材料的相组成及微观结构。结果表明, Mg-Al基复合材料组织致密, 原位合成增强相Al3Ti颗粒在基体中均匀分布, 尺寸为0.5~2.0 μm, 与基体界面紧密结合, 同时存在少量残余的Ti和中间相Al-Ti。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号