共查询到20条相似文献,搜索用时 15 毫秒
1.
采用非等温DSC研究了一种复合材料用环氧树脂体系的固化反应。采用n级反应模型和Malek等转化率法确定了固化反应动力学方程,通过外推法优化其固化工艺,测试优化后工艺下制备的树脂浇铸体的固化度和力学性能。结果表明,n级反应模型与实验值差别较大;采用Malek等转化率法判断固化反应按自催化反应机理进行,在2.5~15℃/min升温速率下,自催化模型计算曲线与实验曲线吻合较好;优化确定其固化工艺为70℃/2h+110℃/2h,在该工艺下制备的浇铸体固化度达98.51%,拉伸强度和弯曲强度分别为75.11MPa和128.10MPa。 相似文献
2.
用非等温DSC技术研究了环氧树脂浇注体系在动态升温过程中的固化反应,用等转化率方法得到了体系的激活能与固化度之间的关系。采用Malek法分析动力学模型时,发现其特征值并不唯一,分析了不同特征值对模型预测结果的影响。确定了动力学模型并预测了相应的参数,结果表明该体系符合两参数自催化SB模型。模型预测与试验数据吻合得很好。 相似文献
3.
用DSC研究环氧树脂固化动力学 总被引:11,自引:1,他引:11
用等温DSC研究了双酚A二缩水甘油醚(E-51)与间苯二胺的固化动力学,探讨了固化机理,结果表明固化按自催化反应机理进行,体系中产生的羟基可加速反应。计算了固化反应各步的动力学参数,得到E_1=51.96kJ/mol,lnA_1=11.29,E_2=69.68kJ/mol,lnA_2=13.43。 相似文献
4.
本文采用非等温DSC法对环氧树脂的固化动力学进行了研究。分别通过Kissinger方法和Ozawa方法得到了树脂固化反应的活化能,均值为53.65 kJ/mol,用Ozawa公式计算得到了反应级数为0.886。 相似文献
5.
采用一锅两步法合成了一种含硅和二氮杂萘酮结构的环氧树脂(TSPZ-EP),并通过非等温差示扫描量热分析(DSC)研究了树脂在不同升温速率下的固化行为.采用n级模型和自催化(m,n)模型确定了固化反应动力学方程;选用商用双酚A环氧树脂(DGEBA)与其进行共混改性,通过外推法确定固化工艺,测试其力学性能.结果表明,n级反... 相似文献
6.
为了预测固化反应的进程,采用STA 449C型差示扫描量热仪,用等温DSC法研究了室温下成膜、中温固化的RFI工艺用(E-44/E-21(6/4,质量比))/GA-327=100/40(质量比)环氧树脂体系在80、90、100、110、120℃下的固化过程,通过Matlab数据拟合良好性统计法得到了n级固化模型、自催化模型及复合模型方程中的各个参数值。根据R2和离差平方和SSE确定了适合的动力学模型。研究表明:该树脂体系的固化反应具有自催化和扩散控制的特征,低温下受扩散控制的影响更大;该体系的固化反应动力学符合自催化反应动力学模型,其表观活化能Ea为56.7kJ/mol,指前因子A为1.18×107 s-1,固化反应的反应级数m、n分别为0.529和1.561。 相似文献
7.
双酚F环氧树脂/DDM体系固化动力学的研究 总被引:2,自引:0,他引:2
利用差示扫描量热法(DSC)和极值法对两种同分异构体比例不同的双酚F环氧树脂(BPF-EP)/DDM体系固化动力学进行了研究,求得了体系的固化动力学参数,并对同分异构体比例与固化特性之间的关系进行了初步讨论.结果表明:当2,2'-结构含量由23.8%增加到31.5%时,由Kissinger和Ozawa方法计算得到的BPF-EP/DDM固化体系的表观活化能分别由58.57 kJ·mol-1和62.53 kJ·mol-1降至46.32 kJ·mol-1和50.88 kJ·mol-1;由Crane方程求得的表观反应级数分别为0.890和0.865. 相似文献
8.
等温DSC法研究聚醚胺与环氧树脂固化反应动力学 总被引:2,自引:0,他引:2
孙文兵 《材料科学与工程学报》2010,28(6)
为了给环氧树脂(DGEBA)/聚醚胺(T403)的实际固化工艺提供指导,在等温条件下采用差示扫描量热法(DSC)对该体系固化过程进行了研究。运用Kenny图像分析法得到了动力学参数,建立了kamal动力学模型;在考虑扩散影响的基础上,多次运用非线性拟合法得到了扩散系数(C)和临界固化度(αc),进一步建立了带扩散控制的动力学模型。结果表明,总反应级数为2.04~2.40,且随固化温度升高而下降。固化反应的两个速率常数都随温度升高而增大,对应的表观活化能分别为42.99和54.23kJ/mol。研究发现不带扩散控制的动力学模型可以较好地描述固化过程的前期阶段,而带扩散控制的动力学模型则可以更好地描述固化全过程。随着固化温度升高,αc增大,扩散影响减小,而带扩散控制的动力学模型与实验结果符合得越好。固化过程属三分子反应,具有明显的自催化特征。 相似文献
9.
10.
环氧树脂固化动力学研究进展 总被引:6,自引:0,他引:6
差示扫描量热仪(DSC)是研究环氧树脂固化动力学的有效手段,获得动力学参数的方法分为模型拟合法和非模型拟合法2类.模型拟合法的关键在于确定动力学三因子,即反应模型、指前因子和活化能;其拟合过程需要事先选择模型及模型参数,并且等温和非等温条件下拟合得到的动力学参数差别较大,无法通过非等温条件下的数据预测等温固化行为.非模型拟合法则通过计算活化能与固化度的对应关系研究固化行为,可以避免模型及模型参数选择不当造成的误差,并且等温和非等温条件下拟合得到的动力学参数基本一致,可由非等温数据预测等温固化行为.准确的动力学方程可为优化固化工艺、提高固化产物性能提供理论基础. 相似文献
11.
非等温DSC法研究高韧性低收缩环氧体系固化动力学 总被引:7,自引:0,他引:7
采用非等温DSC法对一种高韧性低收缩环氧树脂体系(E-51/E-20/DAMI)固化动力学进行了研究。分别通过n级反应模型法和自催化模型法得到了固化反应动力学方程。结果表明,n级反应方程与实验值差别较大;而采用Malek判据判别该固化反应按自催化反应机理进行,并通过"单点非模型"拟合法求解动力学参数,模型计算曲线与DSC实验曲线基本吻合。但由于动力学控制和扩散控制竞争关系的改变,随升温速率的提高,实验曲线逐渐偏离模型曲线,体系的总放热焓变小。所确立的模型在5K/min~25K/min的升温速率下能较好地描述E-51/E-20/DAMI体系的固化反应过程。 相似文献
12.
《高分子材料科学与工程》2010,26(7)
采用非等温差示扫描量热(DSC)方法对酚醛型氰酸酯树脂的固化反应动力学进行了研究。分别通过Ozawa-Flynn-Wall法和Kissiger-Akahira-Sunose法求取了活化能,通过Malek法确定了固化反应机理函数,求解了固化反应动力学参数,得到了固化反应动力学方程为dα/dt=865597exp(-78725/RT)α0.001(1-α)2.289。结果表明,采用Malek法判别固化反应机理符合两参数自催化模型,实验得到的DSC曲线与模型计算所得到的曲线吻合得较好,所确定的模型在3K/min~15K/min的升温速率下能较好地描述酚醛型氰酸酯树脂的固化反应过程,为工艺参数的选择和工艺窗口的优化提供了理论依据。 相似文献
13.
14.
用差示扫描量热法(DSC) 在动态条件下对840S 环氧树脂体系的固化反应动力学进行了研究。根据所测量的不同升温速率的DSC 曲线, 运用温度升温速率( T-β) 图外推法得到该环氧树脂体系的固化工艺参数, 即凝胶化温度、固化温度、后处理温度, 这些温度参数为制定合理的固化工艺提供了理论基础。采用Kissinger 方程和Crane 方程计算该840S 环氧树脂体系的动力学参数, 即表观活化能Ea 、表观频率因子A 和反应级数n 。根据所计算的动力学参数, 建立了该840S 环氧树脂体系的固化动力学模型。利用所建立的固化动力学模型分别预测了等温和动态条件下840S 环氧树脂体系的固化反应特性。 相似文献
15.
采用非等温差示扫描量热(DSC)对多官能团环氧树脂体系固化反应进行了研究,确定了环氧树脂所用固化剂为甲基纳迪克酸酐(MNA)。对AG-70/MNA/2-乙基-4-甲基咪唑(EMI-2,4)环氧树脂体系在不同升温速率下的固化反应进行测试,根据DSC曲线,用温度-升温速率外推法,求出环氧树脂体系的三个特征温度,温度参数能为... 相似文献
16.
反应性聚碳酸酯增韧改性环氧树脂体系固化反应动力学的研究 总被引:5,自引:0,他引:5
对环氧树脂/胺化聚碳酸酯体系的固化反应动力学进行了研究,借助Ozawa t ASTME698动力学方法,利用差示扫描量热仪对该体系的固化动力学参数,包括活化能E,指数前因子A,速率常数k和60min的半周期温度进行了分析,并对不同胺化聚碳酸酯含量时的固化行为,放热峰和动力学参数进行了探讨。 相似文献
17.
18.
采用模型拟合法对环氧树脂固化特性进行模拟和预测时,因涉及机理假设和参数的选取,所以在处理复杂反应时具有一定的局限性。文中采用非模型拟合法中的非线性Vyazovkin(NLV)法对一种高韧性低收缩环氧树脂体系固化动力学进行研究。通过拟合活化能与固化度的关系表明:等温条件下该体系经历了三个截然不同的阶段;非等温条件下,由于温度变化的影响,各阶段活化能的变化是多种因素共同作用的结果。使用NLV法对该体系的等温固化数据进行预测,预测数据与DSC实验数据基本吻合。NLV法在150℃~180℃的固化温度下能较好地描述该体系的等温固化反应过程。 相似文献
19.
用等温差示扫描量热法(DSC)研究了HD03环氧树脂在一定温度范围内的固化反应。试验结果表明,该环氧树脂体系的固化动力学符合自催化固化反应模型。由试验确定了模型中的动力学参数。发现在树脂的固化后期,固化反应由化学反应控制转变为扩散控制。用以绝对反应速率理论为基础的化学粘度分析模型研究了较高温度范围内HD03环氧树脂的等温粘度和变温的动态粘度变化。用MCR 300流变仪测量并计算了HD03环氧树脂的等温粘度和动态粘度。理论预测与试验结果相吻合。 相似文献
20.
采用非等温差示扫描量热法(DSC)研究了603热塑增韧环氧树脂体系的固化反应动力学。研究发现,在低升温速率测试条件下603环氧树脂体系固化反应的DSC曲线有两个重叠的放热峰,通过分离两个重叠的放热峰,研究了603环氧树脂体系固化动力学的特性。利用Kissinger方法和Kamal方程分别拟合得到603树脂体系固化反应的活化能和固化动力学参数,选择三种典型固化工艺制度下预测的树脂固化反应结果与实验数据对比,验证了所建立动力学模型的可靠性。基于不同升温速率的放热曲线,通过外推法得出该树脂占总反应比例70%的第一个反应固化温度为(177.3±2.2)℃,占总反应比例30%的第二个反应的起始温度和固化温度分别为(178.6±0.7)℃和(216.9±1.7)℃。研究结果对于多组分热固性树脂体系固化动力学的分析和复合材料成型工艺的优化具有重要的指导意义。 相似文献