首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 46 毫秒
1.
We suggest a unique mechanism for surface defect generation causing solder joint or bonding failures in printed circuit boards (PCBs). Surface defects can be defined as corroded holes or spikes of the Ni-P layers on the soldering or wire bonding pads of PCBs. The typical defects are the black pad or pinhole pad defects generated after final finishing by the electroless nickel immersion gold (ENIG) process. Once corroded voids or spikes are plentifully created in nickel/gold interfaces, the bonding strength of solder or wire bonding joints is reduced. Therefore, it is important to characterize the details of these surface defects. In this paper, the defect microstructures and the P content variation with the ENIG processes are investigated. The surface defect selectivity with pad size and pad connectivity is suggested based on the key findings of P content variation. An overall mechanism is proposed based on a mixed mode of concentration cell corrosion and galvanic cell corrosion. Based on these results, more reasonable root causes are suggested.  相似文献   

2.
Black Pad was observed on Electroless Ni/Immersion Au (ENIG) wire bond pads. Thick immersion Au on highly corroded electroless Ni was detected. It was determined that the pads were electrically connected to the Cu ground plane due to a Ni bridge formed inside normally open photovias. The mechanism of the bridge formation was verified and preventative actions were taken; it was demonstrated that formation of Black Pad could be switched on and off. The mechanism of Black Pad formation is proposed to be defective ENIG plating involving variation of both the electroless Ni and immersion Au plating processes. The intermetallic structures of solder joints on the above pads were studied. The study was conducted on both defective and non-defective pads to show differences in intermetallic structure and composition. Me2Sn4 and Me2Sn2 (Me=Cu, Ni, and Au) intermetallics were formed on non-defective pads, which nucleated on the Ni layer and grew inside the molten solder. However, only the Me3Sn intermetallic was formed on defective pads inside the corroded Ni Layer. Both mechanisms of intermetallic formation were found on pads with mildly corroded Ni and intermediate Au thickness (4.5–7 in).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号