首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gasification has the potential to convert biomass into gaseous mixtures that can be used for hydrogen production. Thermal gasification and supercritical water gasification are commonly used thermochemical methods for conversion of biomass to hydrogen. Supercritical water gasification handles wet biomass, thus eliminating the capital cost-intensive drying step. Thermal gasification is considered as an alternative means of producing hydrogen from microalgae where biomass has to be dried before gasification. The authors developed techno-economic models for assessment of the production of hydrogen through supercritical gasification and thermal gasification processes. Techno-economic assessment was based on developed process models. Equipment was sized and costs were estimated using the developed process models, and the product value was determined assuming 20 years of plant life. The economic assessment of supercritical water and thermal gasification show that 2000 dry tonnes/day plant requires total capital investments of 277.8 M$ and 215.3 M$ for hydrogen product values of $4.59 ± 0.10/kg and $5.66 ± 0.10/kg, respectively. The relatively higher yield obtained in supercritical water gasification compared to thermal gasification results in lower product value of hydrogen for supercritical water gasification, thereby making it more desirable. This cost of hydrogen is about 4 times the cost of hydrogen from natural gas. The sensitivity analysis indicates that biomass cost and yield are the most sensitive parameters in the economics of the supercritical or thermal gasification process; this signifies the importance of algal biomass availability. The techno-economic assessment helps to identify options for the production of hydrogen fuel through these novel technologies.  相似文献   

2.
A novel system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been constructed, installed and tested at the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The “proof of concept” tests for solar-thermal gasification of biomass in supercritical water (SCW) were successfully carried out. Biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) were gasified continuously with the novel system to produce hydrogen-rich gas. The effect of direct normal solar irradiation (DNI) and catalyst on gasification of biomass was also investigated. The results showed that the maximal gasification efficiency (the mass of product gas/the mass of feedstock) in excess of 110% were reached, hydrogen fraction in the gas product also approached to 50%. The experimental results confirmed the feasibility of the system and the advantage of the process, which supports future work to address the technical issues and develop the technology of solar-thermal hydrogen production by gasification of biomass in supercritical water.  相似文献   

3.
A novel receiver/reactor driven by concentrating solar energy for hydrogen production by supercritical water gasification (SCWG) of biomass was designed, constructed and tested. Model compound (glucose) and real biomass (corncob) were successfully gasified under SCW conditions to generate hydrogen-rich fuel gas in the apparatus. It is found that the receiver/reactor temperature increased with the increment of the direct normal solar irradiation (DNI). Effects of the DNI, the flow rates and concentration of the feedstocks as well as alkali catalysts addition were investigated. The results showed that DNI and flow rates of reactants have prominent effects on the temperature of reactor wall and gasification results. Higher DNI and lower feed concentrations favor the biomass gasification for hydrogen production. The encouraging results indicate a promising approach for hydrogen production with biomass gasification in supercritical water using concentrated solar energy.  相似文献   

4.
Hydrogen from waste biomass is considered to be a clean gaseous fuel and efficient for heat and power generation due to its high energy content. Supercritical water gasification is found promising in hydrogen production by avoiding biomass drying and allowing maximum conversion. Waste biomass contains cellulose, hemicellulose and lignin; hence it is essential to understand their degradation mechanisms to engineer hydrogen production in high-pressure systems. Process conditions higher than 374 °C and 22.1 MPa are required for biomass conversion to gases. Reaction temperature, pressure, feed concentration, residence time and catalyst have prominent roles in gasification. This review focuses on the degradation routes of biomass model compounds such as cellulose and lignin at near and supercritical conditions. Some homogenous and heterogeneous catalysts leading to water–gas shift, methanation and other sub-reactions during supercritical water gasification are highlighted. The parametric impacts along with some reactor configurations for maximum hydrogen production and technical challenges encountered during hydrothermal gasification processes are also discussed.  相似文献   

5.
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock, hydrogen production reactors, and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included, inter alia, direct cost data on construction, maintenance, operations, infrastructure, and storage, along with indirect cost data comprising environmental impacts and externalities, cost of pollution, carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies, respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.  相似文献   

6.
This paper presents a simulative analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. Solar heat has been considered as available at 250 °C in three gasification processes: i) gasification reactor followed by two water gas shift reactors and a pressure swing adsorber; ii) gasification reactor followed by an integrated membrane water gas shift reactor; iii) supercritical gasification reactor followed by two flash separators and a pressure swing adsorber.  相似文献   

7.
Hydrogen can be produced from biomass materials via thermochemical conversion processes such as pyrolysis, gasification, steam gasification, steam-reforming, and supercritical water gasification (SCWG) of biomass. In general, the total hydrogen-rich gaseous products increased with increasing pyrolysis temperature for the biomass sample. The aim of gasification is to obtain a synthesis gas (bio-syngas) including mainly H2 and CO. Steam reforming is a method of producing hydrogen-rich gas from biomass. Hydrothermal gasification in supercritical water medium has become a promising technique to produce hydrogen from biomass with high efficiency. Hydrogen production by biomass gasification in the supercritical water (SCW) is a promising technology for utilizing wet biomass. The effect of initial moisture content of biomass on the yields of hydrogen is good.  相似文献   

8.
The technology of supercritical water gasification of coal can converse coal to hydrogen-rich gaseous products effectively and cleanly. However, the slugging problem in the tubular reactor is the bottleneck of the development of continuous large-scale hydrogen production from coal. The reaction of coal gasification in supercritical water was analyzed from the point of view of thermodynamics. A chemical equilibrium model based on Gibbs free energy minimization was adopted to predict the yield of gaseous products and their fractions. The gasification reaction was calculated to be complete. A supercritical water gasification system with a fluidized bed reactor was applied to investigate the gasification of coal in supercritical water. 24 wt% coal-water-slurry was continuously transported and stably gasified without plugging problems; a hydrogen yield of 32.26  mol/kg was obtained and the hydrogen fraction was 69.78%. The effects of operational parameters upon the gasification characteristics were investigated. The recycle of the liquid residual from the gasification system was also studied.  相似文献   

9.
An integrated system for the production of hydrogen by gasification of biomass and electrolysis of water has been designed and cost estimated. The electrolyser provides part of the hydrogen product as well as the oxygen required for the oxygen blown gasifier. The production cost was estimated to 39 SEK/kg H2 at an annual production rate of 15?000 ton, assuming 10% interest rate and an economic lifetime of 15 years. Employing gasification only to produce the same amount of hydrogen, leads to a cost figure of 37 SEK/kg H2, and for an electrolyser only a production cost of 41 SEK/kg H2. The distribution of capital and operating cost is quite different for the three options and a sensitivity analyses was performed for all of these. However, the lowest cost hydrogen produced with either method is at least twice as expensive as hydrogen from natural gas steam reforming.  相似文献   

10.
Hydrogen production by biomass gasification using solar energy is a promising approach for overcoming the drawbacks of fossil fuel utilization, but the storage of discontinuous solar flux is a critical issue for continuous solar hydrogen production. A continuous hydrogen production system by biomass gasification in supercritical water using molten-salts-stored solar energy was proposed and constructed. A novel double tube helical heat exchanger was designed to be molten salts reactor for hydrogen production. Model compounds (glycerol/glucose) and real biomass (corn cob) were successfully gasified in this molten salts reactor for producing hydrogen-rich gas. The unique temperature profiles of biomass slurry in the reactor were observed and compared with that of conventional electrical heating and direct solar heating approaches. Product gases yield, gasification efficiency and exergy conversion efficiency of the reactor were analyzed. The results showed that the performances of reactor were determined by feedstock style, biomass concentration, residence time and biomass slurry temperature profiles.  相似文献   

11.
Hydrothermal gasification in subcritical and supercritical water is gaining attention as an attractive option to produce hydrogen from lignocellulosic biomass. However, for process optimization, it is important to understand the fundamental phenomenon involved in hydrothermal gasification of synthetic biomass or biomass model compounds, namely cellulose, hemicellulose and lignin. In this study, the response surface methodology using the Box-Behnken design was applied for the first time to optimize the process parameters during hydrothermal (subcritical and supercritical water) gasification of cellulose. The process parameters investigated include temperature (300–500 °C), reaction time (30–60 min) and feedstock concentration (10–30 wt%). Temperature was found to be the most significant factor that influenced the yields of hydrogen and total gases. Furthermore, negligible interaction was found between lower temperatures and reaction time while the interaction became dominant at higher temperatures. Hydrogen yield remained at about 0.8 mmol/g with an increase in the reaction time from 30 min to 60 min at the temperature range of 300–400 °C. When the temperature was raised to 500 °C, hydrogen yield started to elevate at longer reaction time. Maximum hydrogen yield of 1.95 mmol/g was obtained from supercritical water gasification of cellulose alone at 500 °C with 12.5 wt% feedstock concentration in 60 min. Using these optimal reaction conditions, a comparative evaluation of the gas yields and product distribution of cellulose, hemicellulose (xylose) and lignin was performed. Among the three model compounds, hydrogen yields increased in the order of lignin (0.73 mmol/g) < cellulose (1.95 mmol/g) < xylose (2.26 mmol/g). Based on the gas yields from these model compounds, a possible reaction pathway of model lignocellulosic biomass decomposition in supercritical water was proposed.  相似文献   

12.
按所得产品不同,可将生物质气化技术分为制氢、发电和合成液体燃料3大类。文章介绍了生物质流化床水蒸气气化制氢、催化气化制氢和超临界水气化制氢的工艺特点;分析了生物质流化床气化发电的技术、经济可行性;简述了生物质流化床气化合成液体燃料的研究现状;指出气化产出气化学当量比调变、焦油去除问题和合成气净化是生物质流化床气化技术应用的主要瓶颈,认为定向气化是今后研究的主要方向。  相似文献   

13.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

14.
The use of hydrogen as clean fuel gas in the power generation sector becomes essential to reduce the environmental issues related to conventional fuel usage. By avoiding biomass drying process, supercritical water gasification is considered the most efficient technology in hydrogen production from wastewater sludge. Wastewater sludge is difficult to disposal in its received form since it is often produced with high moisture content, contribute to numerous environmental issues and direct contact with this waste can result in health concerns. The assessment of the treatment and conversion of this material into fuel gas at condition beyond supercritical state (374°C and 22.1 MPa) is required. This paper is discussed the degradation routes of wastewater sludge in supercritical water. Furthermore, it is reviewed the influence of the main operation parameters role in the hydrogen production, which includes reaction temperature, pressure, residence time, feed concentration and catalysts. The development in reactor design and setup for maximum hydrogen production is highlighted. The technical challenges encountered during the conversion process and its solutions are also discussed. In addition, future prospective to optimal and standardization of the supercritical water gasification process is reviewed.  相似文献   

15.
In this study, response surface methodology (RSM) combined with a 3–factor and 3–level Box–Behnken design (BBD) was performed to obtain high yield hydrogen production from hydrothermal co–gasification of sorghum biomass and low rank Çan lignite in a batch type reactor at 500 °C. The individual and the combined effects of the process parameters of coal amount (%) of the coal/biomass mixtures, initial water volume (mL) of the reactor and amount of the coal/biomass mixtures (kg) on system pressure, total gas yield, hydrogen production and product distribution were determined. Water volume directly affected the system pressure and the reaction medium was supercritical water medium above 48.2 mL with a pressure of 22.06 MPa. The highest values of both total gas volume and hydrogen gas volume were reached by gasification of 5.0 g of feedstock. It has been observed that total gas volume and hydrogen volume were directly affected by the water volume in the reactor and the coal ratio of the coal-biomass mixtures. The highest total gas and hydrogen volumes can be achieved under the conditions where the higher levels of water volume of the reactor and lower levels of coal percentage of the coal/biomass mixture were combined. Optimum conditions for maximum hydrogen production with 5.0 g of coal/biomass mixture were determined with numerical optimization as coal percentage of 25.6% and initial water volume of 68.5 mL. By combining the impregnated K2CO3 (3%, (w/w)) and CaO catalysts an excellent hydrogen selectivity was achieved. The hydrogen selectivity was drastically increased from 32.0% to 70.8% by capturing more than 99% of CO2 with a H2/CO2 mol ratio of 88.5.  相似文献   

16.
In this study, torrefaction of sunflower seed cake and hydrogen production from torrefied sunflower seed cake via steam gasification were investigated. Torrefaction experiments were performed at 250, 300 and 350 °C for different times (10–30 min). Torrefaction at 300 °C for 30 min was selected to be optimum condition, considering the mass yield and energy densification ratio. Steam gasification of lignite, raw- and torrefied biomass, and their blends at different ratios were conducted at downdraft fixed bed reactor. For comparison, gasification experiments with pyrochar obtained at 500 °C were also performed. The maximum hydrogen yield of 100 mol/kg fuel was obtained steam gasification of pyrochar. The hydrogen yields of 84 and 75 mol/kg fuel were obtained from lignite and torrefied biomass, respectively. Remarkable synergic effect exhibited in co-gasification of lignite with raw biomass or torrefied biomass at a blending ratio of 1:1. In co-gasification, the highest hydrogen yield of 110 mol/kg fuel was obtained from torrefied biomass-lignite (1:1) blend, while a hydrogen yield from pyrochar-lignite (1:1) blend was 98 mol/kg. The overall results showed that in co-gasification of lignite with biomass, the yields of hydrogen depend on the volatiles content of raw biomass/torrefied biomass, besides alkaline earth metals (AAEMs) content.  相似文献   

17.
Food waste is a type of municipal solid waste with abundant organic matter. Hydrogen contains high energy and can be produced by supercritical water gasification (SCWG) of organic waste. In this study, food waste was gasified at various reaction times (20–60 min) and temperatures (400 °C-450 °C) and with different food additives (NaOH, NaHCO3, and NaCl) to investigate the effects of these factors on syngas yield and composition. The results showed that the increase in gasification temperature and time improved gasification efficiency. Also, the addition of food additives with Na+ promoted the SCWG of food waste. The highest H2 yield obtained through non-catalytic experiments was 2.0 mol/kg, and the total gas yield was 7.89 mol/kg. NaOH demonstrated the best catalytic performance in SCWG of food waste, and the highest hydrogen production was 12.73 mol/kg. The results propose that supercritical water gasification could be a proficient technology for food waste to generate hydrogen-rich gas products.  相似文献   

18.
Supercritical water gasification (SCWG) is a new treatment of black liquor (BL) for both energy recovery and pollution management. To provide more energy for the pulp mill, it is proposed to use the pulping raw material as supplementary energy source because it is readily available, inexpensive and renewable. In this study, co-gasification of BL and wheat straw (WS) in supercritical water was investigated. The synergistic effect was observed in the co-gasification because the addition of wheat straw can make better use of the alkali in BL. The maximum improvement of the gasification by the synergistic effect was obtained with the mixing ratio of 1:1. The influences of the temperature (500–750 °C), reaction time (5–40 min), mixture concentration (5.0–19.1 wt%), mixing ratio (0–100%) and the wheat straw particle diameter (74–150 μm) were studied. It was found that the increase of temperature and reaction time, and the decrease of concentration and wheat straw particle size favored the gasification by improving the hydrogen production and gasification efficiency. The highest carbon gasification efficiency of 97.87% was obtained at 750 °C. Meanwhile, the H2 yield increased from 12.29  mol/kg at 500 °C to 46.02  mol/kg. This study can help to develop a distributed energy system based on SCWG of BL and raw biomass to supply energy for the pulp mill and surrounding communities.  相似文献   

19.
This study aims to discuss some of the factors that influence the production of hydrogen via the gasification of organic matter in supercritical water. These factors have been investigated based on the reactions of organic matter with relatively simple chemical structures, such as ethanol, glycerol, and glucose. Investigations of these relatively simple organic materials demonstrate the characteristics and trends in the gasification in supercritical water. The results reported in the literature for these organic compounds can also be extrapolated to the reactions of biomass containing ethanol, glucose, (sugar cane industry) and glycerol (biodiesel industry) in supercritical water. Many organic compounds with different levels of molecular complexity can be used to produce hydrogen, which represents an interesting form of energy storage. Supercritical water (Tc ≥ 374 °C, Pc ≥ 22.1 MPa) has unique physical and chemical properties that minimize mass transport limitations, making it an excellent medium for the decomposition of organic compounds. Thus, understanding the key factors that influence organic compound gasification in supercritical water is extremely important. In this study, we summarize some of the key factors involved in these reactions. The main experimental factors were confirmed to be the temperature, concentration of organic matter in the feed, space time/feed rate, catalysts, oxidants, material and design of the reactor, and pressure. In addition, operational challenges, namely, catalyst deactivation and corrosion are mentioned in the text. Furthermore, the operational challenges were discussed, and the state of the art regarding the gasification of ethanol-, glycerol-, and glucose-containing biomass is also presented.  相似文献   

20.
搭建了一套连续式多碟太阳能聚热与生物质超临界水气化耦合制氢系统,以生物质模型化合物(乙二醇、丙三醇、葡萄糖)为原料在该装置上进行了气化制氢实验,研究了太阳能直接辐照度(DNI)、物料成分、物料浓度、停留时间对气化效果的影响。实验结果表明:太阳能直接辐照度对太阳能吸收器腔内及反应器壁温的影响较大,进而能影响气化效果,在实验流量、压力范围内当DNI为363~656W/m2时,反应器出口流体温度达520~676℃,可以满足生物质超临界水气化制氢的温度及能量需要。0.1mol/L葡萄糖气化H2体积分数均值超过50%,H2产量为27.2mol/kg,气化率达109.7%。低物料浓度和长停留时间有利于气化效果的提高。实验验证了利用可再生的太阳能聚焦供热耦合生物质超临界水气化制氢是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号