首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤过滤系统处理农村生活污水的 试验研究   总被引:1,自引:0,他引:1  
采用一种土壤过滤系统处理农村生活污水,考察了该工艺对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果。实验结果表明,当水力负荷约为0.05 m3/(m2·d), 水力停留时间为3 d时。该土壤过滤系统对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果较好,平均去除率分别达到84.6%、83.3%、64.3%、59.8%和70%。出水CODCr约为18.3~42.1 mg/L,BOD5约为8.9~17.3 mg/L,NH3-N约为11.2~17.7 mg/L,TN约为21.2~31.3 mg/L,TP小于2.0 mg/L,出水水质优于农田灌溉水质标准(GB 5084—2005)。气温变化和进水污染物浓度对处理效果影响明显。总体上来讲,温度大于22 ℃时,进水污染物浓度越低处理效果越好。  相似文献   

2.
Wastewater from seafood industry contains high concentrations of organic matter, nitrogen compounds, and solid matter. Constructed wetland can be used as tertiary treatment and for nutrient recycling. This research studied the performance of nitrogen and suspended solids removal efficiency of a constructed wetland treating wastewater from a seafood-processing factory located at Songkhla, southern Thailand. The existing constructed wetland has dimensions of 85 m, 352 m and 1.5 m in width, length and depth respectively, with an area of about 29,920 m2. The water depth of 0.30 m is maintained in operation with plantation of cattails (Typha augustifolia). Flow rate of influent ranged between 500-4,660 m3/d. Average hydraulic retention time in the constructed wetland was about 4.8 days. Influent and effluent from the constructed wetland were collected once a week and analyzed for pH, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD5), Suspended solid (SS), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), organic nitrogen (Org-N), nitrate (NO3-N), and nitrite (NO2-N). The average removal efficiencies of BOD5, SS, TKN, NH3-N, and Org-N were 84%, 94%, 49%, 52% and 82%, respectively. It was found that the constructed wetland acting as a tertiary treatment process provided additional removal of BOD5, SS and TKN from wastewater from the seafood industry.  相似文献   

3.
An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m(3)/d. The total capital cost of this system is 680 Yuan (RMB) or US dollars 82/m(3)/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US dollars 0.012/m(3), only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45-65 mg/l, 7-32 mg/l, 12-35 mg/l, 2-13 mg/l and 0.2-1.8mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9%o respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.  相似文献   

4.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

5.
针对分散建筑的特点,厌氧-生物托盘系统对生活污水进行了处理试验,分析研究了处理系统污染物的去除效果,COD去除率为90%以上,SS为85%以上,NH3-N为80%以上,TP为80%以上,出水水质各项指标达到中水回用的要求。  相似文献   

6.
A laboratory-scale oxic biofilm reactor using loofah sponge as support material was carried out to study its start-up characteristics and the optimum operation parameters in removing organic matter and nitrogen from domestic wastewater. It took no more than 10 days to complete microbiological cultivation and acclimation, indicating that the natural loofah sponge was a superior support material compared with some conventional ones. The influence parameter experiments showed that the hydraulic retention time (HRT) had a significant influence on the COD and NH(3)-N removal efficiencies, the average COD and NH(3)-N removal efficiencies were 83.7 and 96.9% respectively when the temperature was 25 ± 2 °C, the influent flow rate was 0.21 L/h and the HRT was 7.5 h. The loofah sponge biofilm system had a strong tolerance to organic shock loading in the present experiment. Additionally, it was found that domestic wastewater could be preferably treated with 88.9% of COD and 98.7% of NH(3)-N removal efficiencies with the corresponding influent concentrations of 260.0 and 26.8 mg/L, respectively. The observations obtained in the present study indicated that the loofah sponge was an excellent natural support material, potentially feasible for the present system for the treatment of the decentralized domestic wastewater.  相似文献   

7.
生物过滤氧化反应器处理生活污水中试研究   总被引:3,自引:0,他引:3  
以生活污水为处理对象 ,研究了生物过滤氧化反应器 (BIOFOR)在高滤速、高负荷、小的气水比情况下 ,用非常短的水力停留时间 (6 0~ 80min) ,取得了很好的出水水质的机理 ,主要水质指标 (COD、BOD、SS、氨氮 )可达到国家《污水综合排放标准》或《生活杂用水水质标准》。同时探讨了滤速及容积负荷对出水水质的影响 ,分析了主要污染物的去除规律。  相似文献   

8.
Enhancing the treatment efficiency of livestock wastewater by effluent recirculation is investigated in a pilot-scale vertical-flow constructed wetland. The wetland system is composed of downflow and upflow stages, on which narrow-leaf Phragmites communis and common reed Phragmites typhia are planted, respectively; each stage has a dimension of 4 m(2) (2 m x 2 m). Wastewater from the facultative pond is fed into the system intermittently at a flow rate of 0.4 m(3)/d. Recirculation rates of 0, 25%, 50%0, 100% and 150% are adopted to evaluate the effect of the recirculation rate on pollutants removal. This shows that with effluent recirculation the average removal efficiencies of NH4-N, BOD5 and SS obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%o, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, DO and oxidation-reduction potential (ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R(2) > 0.93) are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by the gradually enhanced nitrification process. When recirculation rate is kept constant at 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.  相似文献   

9.
An on-site study on the operational performance of a combined eco-system of ponds and SF constructed wetland for municipal wastewater treatment and reclamation/reuse in Donging City, Shandong, China was carried out from January 2001 through October 2003. The removal efficiencies for various main parameters were: TSS 84.8 +/- 7.3%, BOD5 87.2 +/- 5.3%, CODCr 70.2 +/- 18.6%, TP 52.3 +/- 23.1%, and NH(3)-N 54.8 +/- 23.9% with effluent concentration of TSS 9.12 +/- 5.12 mg/l, BOD5 6.44 +/- 4.58 mg/l, CODCr, 42.8 +/- 6.7 mg/l, TP 0.94 +/- 0.27 mg/l and NH(3)-N 7.95 +/- 2.36 mg/l. In addition, the removal efficiencies for faecal coliforms and total bacteria were > 99.97% and > 99.998% respectively, which well meet Chinese National standards for effluent quality of municipal wastewater treatment plants. The composition of TSS was closely related to CODCr and BOD5 variations, and nitrification-denitrification is the major mechanism of nitrogen removal both in ponds and in wetlands. In addition, sedimentation also played an important role in the removal of TSS, nitrogen, phosphorus and BOD5. The removal efficiencies of various parameters, the number of species and biomass of biological community in the system increased gradually with the ecological maturation.  相似文献   

10.
研究了复合垂直流人工湿地处理系统在停留时间为3d时对小清河污水的净化效果.结果表明,复合垂直流人工湿地系统处理效果相当稳定,其对小清河出水中COD、BOD5、TP、TN、SS的平均去除率分别为85%、89%、94%、34%和74%以上.而种植植物的系统去除效果明显高于无种植植物系统的去除效果.  相似文献   

11.
两种复合垂直流人工湿地污水处理对比研究   总被引:1,自引:0,他引:1  
构建下行流-上行流、下行流-下行流两套复合人工湿地处理生活污水,考察不同运行方式下两套湿地系统污染物净化效果。结果表明,下行流-上行流复合系统适合在较低水力负荷[0.6m3/(m^2.d)]下运行,系统连续进水5天的出水效果很好,COD、TP、氨氮、TN的去除率分别为75%-95%、65%-85%、45%-80%、45%-80%。下行流-下行流复合系统耐水力负荷冲击能力强,适合在高水力负荷[1.2m3/(m^2.d)]下运行,COD、TP、氨氮、TN的去除率分别为70%-95%、40%-85%、50%-90%、50%-80%;其水流方式较下行流-上行流复合系统水流方式更利于复氧,有利于高水力负荷下COD、氨氮的降解。研究成果为实际中人工湿地处理生活污水的运行操作提供了依据和参考。  相似文献   

12.
Several series of experiments were conducted to investigate the treatment of piggery wastewater using chemical precipitation (CP) where various types of coagulants such as aluminium sulfate (Al2(SO4)3), poly aluminium chloride (PAC), ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3), ferrous sulfate (FeSO4) and ferrous chloride (FeCl2) were used. Throughout the experiments, CP was found to achieve high removal efficiencies for organic compounds and nutrients (nitrogen and phosphorus) from the piggery wastewater. Experimental results showed the optimal doses of FeCl3, Fe2(SO4)3, FeCl2 and FeSO4 was 2.0 g/L, while 0.31 g/L and 2.5 g/L were the optimum dose for PAC and Al2(SO4)3, respectively. The pH range 4-5 resulted in the best performance to all coagulants except FeCl2 and FeSO4, whose optimum pH were more than 6. Percentage removal efficiencies for COD were in the ranges of 70-80%, 90-95% for SS, 80-90% for organic-N and TP. Those removal efficiencies were achieved within 5 min of operation. Three times of repetition in CP resulted in higher removal efficiencies for COD, SS and colour up to 74%, 99% and 94% respectively, in which Al2(SO4)3 was used as the coagulant. Removal efficiencies of various water quality parameters in a continuously operated reactor were similar to those of the batch experiments. Biodegradable ratios (BOD5/COD) increased up to 65% after the application of CP.  相似文献   

13.
Vegetated drainage ditches (VDD) as a type of constructed wetland primarily serve to remove and store excess water associated with irrigation and storm events. Current research suggests using a VDD as an additional practice in the mitigation of surface water pollution. The VDD for water treatment of the Glinscica River was constructed in 2006. The efficiency of the system was evaluated in 2008 and 2009 regarding the reduction of SS, COD, BOD5, NH4-N, NO3-N, NO2-N, TN, ON and TP. The microbiological association developed in the VDD was analyzed with a focus on the identification and quantification of the narG gene as a denitrification indicator. This paper discusses the efficiency of pollution removal and the distribution of the narG gene within the VDD. The results showed that the highly fluctuating water regime was the main reason for the even distribution and abundance of the narG gene throughout the system, regardless of oxygen saturation or the nutrient status of the wastewater. With the exception of SS, pollutant concentrations met the permitted outflow levels.  相似文献   

14.
A four stage pilot plant of step-feed biological nutrient removal (BNR) was employed to investigate reactor performance and process stability. The results obtained showed that step-feed BNR is efficient and cost-effective for nitrogen and carbonaceous removal from municipal wastewater. The total average removal efficiencies of COD, NH3-N, TN and TP could reach as high as 89.5, 97.8, 73 and 75%, respectively, with 50% of return activated sludge (RAS), 9 h of hydraulic retention time (HRT) and 20 d of sludge retention time (SRT). Step-feed BNR is an alternative and effective technology of nutrient removal for municipal wastewater treatment.  相似文献   

15.
In order to enhance the hydraulic loading rate(HLR) of a subsurface wastewater infiltration system(SWIS) used in treating domestic sewage,the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio(R WD) was 1.0, the pollutant removal rate increased by(13.6 ± 0.3)% for NH3-N,(20.7 ± 1.1)% for TN,(18.6 ± 0.4)% for TP,(12.2 ± 0.5)% for BOD,(10.1 ± 0.3)% for COD, and(36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water e Water Quality Standard for Scenic Environment Use(GB/T 18921-2002)even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential(ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the R WD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference( p 0.05) under different R WD s. The suggested R WD was 1.0. Relative contribution of the pretreatment and SWIS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.  相似文献   

16.
There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.  相似文献   

17.
A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater.  相似文献   

18.
Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.  相似文献   

19.
Data from 18 sampling wells in Kodij?rve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodij?rve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodij?rve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime.  相似文献   

20.
It is an essential task to remove the residual organic pollutants (ROP) from secondary effluent of a Wastewater Treatment Plant (WWTP) in wastewater reclamation and reuse processes. Four different compared flow schemes would be achieved for further purification of the secondary effluent by switching of different valves. In order to mainly remove non-biodegradable residual organic pollutants under various operating conditions, the optimum technology and economic process was obtained in the advanced purification flow scheme at a flow of 3200 m(3)/d in Harbin Wenchang WWTP. Conclusions under a lot of experiments show that: choosing the coagulation-settler plus biofilm filter for advanced purification process is reasonable; during the stable operation phase, this process showed good performance in removing the COD, BOD5, TP, NH3-N and SS; the removal rates are 50%, 39%, 67%, 50%, 80% respectively. The effluent is able to excel the requirements for wastewater reuse standards. The unit cost of the water is 0.542 yuan/m(3), which is far below the fee paid for supply water, long-distance transfer water or seawater desalination through economic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号