首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为实现动态多目标下的拓扑优化结构设计,以结构动柔顺度最小化和固有频率最大化加权函数为目标,提出基于双向渐进结构优化方法(Bi-direction Evolutionary Structural Optimization, BESO)的连续体结构动态特性多目标拓扑优化方法。基于等效静载荷法(Equivalent Static Loads, ESL),将结构动刚度优化问题转化为多工步载荷作用下的线性静刚度优化问题,结合BESO方法实现结构多工况线性静态优化。分别归一化目标函数和灵敏度,避免不同性质目标函数及灵敏度的量级差异引起的数值奇异性。数值算例结果表明,结构体积约束、频率与动柔顺度综合目标均能渐进收敛于最优目标值,优化结构具有清晰的拓扑构型。随着柔顺度灵敏度、权重因子的减小,优化结构拓扑形式发生显著变化,其动刚度逐渐减小,而固有频率逐渐增加。所提出的频率-动刚度多目标拓扑优化方法能够提高结构动态特性,拓展了BESO方法对结构动力学拓扑优化问题的应用范围。  相似文献   

2.
针对动压力作用下连续体结构拓扑优化问题,文中以结构动柔顺度为目标,以材料体积为约束,建立拓扑优化模型.该优化问题作为一般动力学拓扑优化问题的延伸,其动压力载荷不仅随着时间简谐变化,而且随着结构拓扑和形状的变化而改变力的作用点和方向.文中提出一种基于单元的边界搜索方法,简便而准确地获得优化过程中的压力加载边界.同时采用RAMP(rational approximation of material properties)方法消除局部模态现象.数值算例表明,采用这种新的边界搜索方法,结合RAMP方法处理此类问题是有效的.  相似文献   

3.
针对热传导拓扑优化设计过程中拓扑相关热载荷问题,以结构散热弱度为目标函数,体积分数为约束条件,构建了多相材料散热结构拓扑优化数学模型。采用一种基于变密度理论的有序固体各向同性微结构材料惩罚模型法构建多相材料插值模型,分别进行拓扑相关热载荷与拓扑独立热载荷作用下的灵敏度分析,借助优化准则法推导设计变量的迭代格式,引入偏微分方程过滤方法抑制优化过程中出现的数值不稳定现象。通过2D与3D数值模型计算,获得考虑拓扑相关热载荷、拓扑独立热载荷以及耦合拓扑独立/相关热载荷在不同边界条件下对拓扑优化结果的影响规律。结果证明了所提方法在解决拓扑相关热载荷作用下散热结构多相材料拓扑优化设计问题方面的有效性与可行性。  相似文献   

4.
研究了简谐载荷作用下以结构指定位置位移响应幅值为设计目标、结构体积为约束的结构拓扑优化设计问题.利用频率响应法和模态叠加法求解结构在简谐载荷作用下的动位移响应,并对其动位移响应灵敏度进行了求解.同时,为消除动力学拓扑优化问题中易出现的局部模态现象,引入材料属性的多项式插值模型,采用了灵敏度再分配方法避免拓扑优化过程中的棋盘格现象.优化模型采用GCM算法求解,经优化算例验证,所提出的方法是可行性的.  相似文献   

5.
孙士平  刘宇峰 《中国机械工程》2015,26(24):3289-3294
针对狭长结构拓扑优化过程中存在的计算困难、有中间密度存在和优化构型复杂等问题,提出周期模块拼装方法,并建立混合梁单元模块有限元模型,开展了狭长结构的拓扑优化设计。以承受均布压力载荷的悬臂狭长结构为例,分析比较了不同模块数、不同材料用量以及不同截面梁对优化结果的影响。计算结果显示,采用周期模块拼装策略能获得规则简单易制造的优化构型,周期狭长结构具有尺寸效应且存在最佳模块尺寸来最大化拼装结构刚度。将混合梁单元模型的模块尺寸与拓扑协同优化结合,获得了清晰规则的类桁架构型。最后应用所提方法实现了周期狭长梯形结构的构型优化。  相似文献   

6.
吴劲松  周金宇 《中国机械工程》2015,26(16):2203-2208
考虑工程实际中外载荷、材料属性等的随机不确定性对结构安全性的影响,研究了具有结构位移可靠性约束的拓扑优化设计。建立以柔度最小为目标、以单元相对密度为变量、具有材料体积分数约束和结构位移可靠性约束的拓扑优化数学模型;针对运用有限元数值计算方法时结构功能函数为隐式的情况,运用响应面法近似逼近结构真实的功能函数;利用简便高效的一次二阶矩法计算结构位移可靠度;采用内循环为确定性的拓扑优化、外循环控制结构材料体积分数的策略对连续体结构进行可靠性拓扑优化设计。通过两个算例与确定性拓扑优化结果进行比较,结果表明所提设计方法是高效可行的。  相似文献   

7.
面向机床整机动态性能的立柱结构优化设计研究   总被引:8,自引:1,他引:8  
针对某机床结构薄弱件立柱的结构优化设计,提出了一种基于拓扑优化、筋板形式选择与布局以及尺寸优化的结构设计方法。首先利用有限元法(finite element analysis,FEA)对机床整机进行动力学分析,模态分析与谐响应分析结果表明立柱为影响整机动态性能的关键结构件。然后以立柱结构为优化目标,对立柱进行拓扑优化,根据拓扑优化的材料分布情况设计了立柱的最优基本结构形式,再通过选择抗弯、抗扭刚度较好的W类型筋板进行布局与尺寸优化,得到了最终的立柱优化结构。最后对优化的立柱结构进行验证,分析结果表明:该结构设计方法有效地改善了整机的动态性能,在立柱质量减轻的前提下,优化后的整机前六阶固有频率均得到了不同程度的提高,其中一阶固有频率提高了10%以上;并且机床在x方向上的最大共振峰值下降了49.8%,y方向下降了70.1%,z方向下降了66.2%。  相似文献   

8.
用拓扑优化方法进行热传导散热体的结构优化设计   总被引:13,自引:0,他引:13  
分析了拓扑优化中的材料密度方法和优化准则数值求解算法,将结构力学中的拓扑优化方法应用到热传导结构的优化设计中,建立了热传导结构的拓扑优化数学模型,以设计具有最佳散热效果情况下的结构拓扑分布,为传热体的结构优化设计提供了一种有效的新思路和方法。  相似文献   

9.
将自适应成长法应用到周期性加筋结构的拓扑优化设计中,以结构的应变能最小为目标,以加强筋截面积为设计变量,并构建拓扑优化设计模型。为保证优化结构可得到周期性最优拓扑形式,在优化数学模型中加入了周期性约束,并引入敏度过滤函数解决数值不稳定等问题。典型工程结构设计案例表明,提出的方法在周期性加筋结构设计中可得到形态清晰的筋条布局,且设计效率高、适用性广。同时利用所提方法模拟荷叶叶脉生长,获得了与自然界荷叶叶脉相似的布局形态,表明自然界荷叶叶脉分布能使荷叶在承受雨雪等自然载荷作用下的整体刚度最大。  相似文献   

10.
考虑载荷大小和方向的不确定性,以结构柔顺度的期望和方差的加权和为目标函数,结构体积为约束函数,研究稳健结构拓扑优化方法。首先给出载荷大小和方向不确定情况下结构柔顺度期望和方差及其导数的显式近似式,而后改进可行域调整方案,提出具有收敛特征的稳健结构拓扑优化设计方法,探讨结构柔顺度期望和方差的权重因子以及随机量的方差对拓扑构型的影响。给出的算例表明,不论是确定载荷拓扑优化还是随机载荷拓扑优化,方法是可行和有效的,且可获得一系列清晰的拓扑构型和稳健的优化拓扑。  相似文献   

11.
提出了一种考虑周期性约束的功能梯度结构稳态热传导拓扑优化设计方法。建立了基于变密度理论的固体各向同性微结构惩罚(SIMP)模型的周期性功能梯度拓扑优化模型。以整体结构散热弱度最小化为目标函数、体积分数为约束条件进行宏观拓扑优化,提取了最优构型中各预设梯度层的体积分数;通过重新分配单元散热弱度,实现了梯度层周期性约束设置。借助基于偏微分方程的灵敏度过滤方法消除数值不稳定问题,并采用移动渐近线法对设计变量进行了迭代更新。通过2D和3D数值算例分析了全局周期以及周期性分层梯度设置下,不同离散单元和子区域个数对宏观结构和微观构型的影响规律。研究结果表明:所提方法能够实现周期性约束下功能梯度结构的拓扑优化设计,不同子区域个数条件下均能获得清晰的周期性功能梯度结构且所获得的结构具有良好的散热性能。  相似文献   

12.
崔宇朋  余杨  余建星  李振眠 《中国机械工程》2022,33(23):2879-2887+2897
提出了一种加筋板概念-详细联合设计框架,以开展空间约束下的大跨度无支撑甲板刚度、变形及动态振动性能拓扑-尺寸-材料综合优化研究。应用加筋板拓扑设计域降维处理策略解决了大跨度甲板三维实体单元断连及计算效率低的问题。提出了兼顾迭代效率和逼近全局最优解的三段式延拓(TSC)法并应用于大跨度甲板的应变能、多工况位移及一阶动态频率的概念设计。通过480个加筋板刚度最大化算例证明了TSC法的有效性。提出了尺寸/材料一体化设计方法,并联合自动化技术对大跨度甲板概念结构进行了详细设计以便工程化制造,即曲形T形梁的截面尺寸、面板厚度及材料弹性模量组合优化。结果表明:与传统大跨度甲板相比,通过加筋板概念-详细联合设计框架高效获得的曲形大跨度无支撑甲板具备空间及性能(刚度、变形、动态振动)的双重优势。  相似文献   

13.
张横  丁晓红  沈磊  徐世鹏 《中国机械工程》2021,32(20):2403-2410
三明治阻尼复合结构的力学性能取决于阻尼层材料的性能,综合考虑该结构的阻尼性能和可制造性要求,提出了一种面向结构宏观性能并考虑连接性的三明治阻尼复合结构拓扑优化设计方法。以最大化结构模态阻尼比为目标,考虑微结构刚度相材料的连接性,通过组合强制性连接约束法和非线性扩散法,构建了连接性约束下的阻尼复合材料微结构的优化设计模型,并结合3D打印技术实现了三明治阻尼复合结构的制造。运用所提方法对典型结构进行优化设计,得到了刚度相保持连接的阻尼复合结构,且优化后的结构阻尼变大,结构的频率响应变小,实现了三明治阻尼复合结构材料结构设计制造协同优化设计。仿真和实验结果表明,在微结构上存在最优的阻尼材料体积分数使优化后的三明治结构频率响应最小。  相似文献   

14.
采用改进的过滤技术进行多相材料的连续体结构拓扑优化设计。以应变能最小化作为目标函数,结构体积作为约束,建立多相材料的连续体结构拓扑优化模型,将移动近似算法用于拓扑优化问题求解,采用改进的过滤求解技术对目标函数灵敏度及单元设计变量进行过滤,避免迭代过程中出现数值不稳定现象。数值算例结果表明,采用改进的过滤技术的多相材料连续体结构拓扑优化设计方法是有效的,能够获得清晰的结构拓扑图。  相似文献   

15.
等几何拓扑优化方法采用CAD的B样条或者NURBS作为CAE未知物理场的形函数,有效避免了传统有限元拓扑优化由于拉格朗日基函数C0连续所带来的低精度问题。多重网格等几何拓扑优化技术可通过优化域的层间继承显著提高等几何拓扑优化的计算效率,但存在单元刚度矩阵消耗内存空间及预处理时间过长等问题。针对上述问题,研究了基于Bézier单元刚度映射的多重网格等几何拓扑优化方法,采用标准Bézier单元刚度矩阵与相应的Bézier提取矩阵进行任一层级任一B样条单元刚度矩阵的等效表达,进而实现多重网格等几何拓扑优化数据存储结构和预处理过程的优化。数值算例结果表明,相比于传统多重网格等几何拓扑优化模型,所提方法具有相同的优化收敛过程和优化结果,并显著地减小B样条单元刚度矩阵的存储空间并缩短预处理时间,验证了所提方法的有效性。  相似文献   

16.
针对空心多孔结构参数化建模困难、承载性能不足的问题,提出了一种梯度空心多孔结构优化设计方法。将不同水平参数的I-WP(I-wrapped package)型三周期极小曲面进行布尔运算实现了空心多孔结构单胞的隐式建模,并基于数值均匀化法对该结构的等效弹性属性进行了评估。通过引入凸优化理论的仿射概念,构造混合水平集函数,实现了梯度空心多孔结构的参数化建模;以刚度最大化为目标函数,建立了基于混合水平集方法的梯度空心多孔结构拓扑优化模型,通过优化准则算法进行求解,得到了具有良好连续性的梯度多孔结构。对优化结构进行了有限元分析,并采用选择性激光烧结技术制造了模型样件,开展了力学实验。数值案例和实验结果表明,该方法可有效实现空心多孔结构的参数化设计,显著提高了多孔结构的承载性能。  相似文献   

17.
基于面光滑有限元的复杂三维结构拓扑优化   总被引:1,自引:0,他引:1  
为了增强拓扑优化计算对任意复杂模型的适应性,改进基于线性四面体有限元的拓扑优化结果,引入了一种新型高精度的基于面光滑有限元模型(FS-FEM)来进行拓扑优化,通过每次迭代时提供很好的梯度解及位移解,从而达到改善拓扑优化结果的目的。在基于面光滑有限元模型的拓扑优化中,以柔度最小作为目标函数,建立了基于固体各向同性材料惩罚插值(SIMP)的拓扑优化数学模型,该数学模型通过最优准则进行求解。多个不同载荷的拓扑优化数值算例说明,采用基于面光滑有限元进行拓扑优化,结果都能够单调收敛,且采用该方法建立的拓扑优化模型能抑制棋盘格现象。与商业软件OptiStruct的计算比较表明,该方法相比有限元方法能得到更合理的拓扑结构。  相似文献   

18.

This paper presents a hybrid algorithm for topology optimization of lightweight cellular materials and structures simultaneously by combining solid isotropic material with penalization (SIMP) and bi-directional evolutionary structural optimization (BESO). Microstructure of the lightweight cellular material is assumed unique in the structure to make the proposed method feasible. A new sensitivity analysis formula with respect to the discrete variable is derived by a principal submatrix stiffness matrix, by which the material can be effectively removed from or added to cellular. Moreover, the validity of the proposed method is then demonstrated through two numerical examples (a simple supported beam and a cantilever beam), which can be easily applied in a variety of practical situations.

  相似文献   

19.
There are three difficulties in topology optimization of continuum structures. 1) The topology under multiple load case is more difficult to be optimized than under single load case, because the former becomes a multiple objective based on compliance objective functions. 2) With local constraints, such as an elemental stress limit, the topology is more difficult to be solved than with global constraints, such as the displacement or frequency limits, because the sensitivity analysis of the former has very expensive computation. 3) With the phenomenon of load illness, which is similar with stiffness illness in the structural analysis, it is not easy to get the reasonable final topological structure, because it is difficult to consider different influences between the loads with small forces and big forces, and some topology paths of transferring small forces may disappear during the iteration process. To overcome difficulties above, four measures are adopted. 1) Topology optimization model is established by independent continuous mapping (ICM) method. 2) Based on the von Mises strength theory, all elements’ stress constraints are transformed into a structural energy constraint. 3) The phenomenon of load illness is divided to classify into three cases. 4) A strategy based on strain energy is proposed to adopt ICM method with stress globalization, and the problems of the above mentioned three cases of load illness are solved in terms of different complementary approaches. Several numerical examples show that the topology path of transferring forces can be obtained more easily by substituting global strain energy constraints for local stresses constraints, and the problem of load illness can be solved well by the weighting method that takes the structural energy as a weighting coefficient.  相似文献   

20.

The paper investigates the buckling responses of functionally graded material (FGM) plate subjected to uniform, linear, and non-linear in-plane loads. New nonlinear in-plane load models are proposed based on trigonometric and exponential function. Non-dimensional critical buckling loads are evaluated using non-polynomial based higher order shear deformation theory. Navier’s method, which assures minimum numerical error, is employed to get an accurate explicit solution. The equilibrium conditions are determined utilizing the principle of virtual displacements and material property are graded in the thickness direction using simple Voigt model or exponential law. The present formulation is accurate and efficient in analyzing the behavior of thin, thick and moderately thick FGM plate for buckling analysis. It is found that with the help of displacement-buckling load curve, critical buckling load can be derived and maximum displacement due to the instability of inplane load can be obtained. Also, the randomness in the values of transverse displacement due to inplane load increases as the extent of uniformity of the load on the plate is disturbed. Furthermore, the parametric varying studies are performed to analyse the effect of span-to-thickness ratio, volume fraction exponent, aspect ratio, the shape parameter for non-uniform inplane load, and non-dimensional load parameter on the non-dimensional deflections, stresses, and critical buckling load for FGM plates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号