共查询到19条相似文献,搜索用时 62 毫秒
1.
针对传统故障诊断方法诊断过程复杂、效果不佳的问题,提出一种基于卷积神经网络的滚动轴承故障诊
断方法。首先选取不同故障的振动信号进行归一化处理,然后把 1 维的振动信号转化成 2 维的灰度图像,利用每个
元素与其相邻元素之间的关系,并且采用重叠采样的方法加强数据集。在卷积神经网方面利用 tensorflow 搭建网络
框架,采用 4 种不同的卷积神经网络结构对样本进行训练。为避免实验的随机性,对每种方案进行多次训练,采其
结果的均值。根据测试集的准确率选取最好的适合轴承故障诊断的模型,同时对网络的结构参数进行优化改进,提
高模型的识别率和运行效率。实验结果表明,该方法可以准确地将滚动轴承的故障进行识别和分类。 相似文献
2.
3.
4.
5.
6.
7.
针对滚动轴承故障信号的特点,提出EMD和Elman神经网络结合的滚动轴承故障诊断方法。以滚动轴承振动信号为研究对象,首先对信号进行经验模态分解(EMD),提取包含主要信息成分的本征模函数(IMF)分量,将IMF的能量比作为特征向量输入Elman神经网络进行网络训练和故障识别,实现滚动轴承的故障诊断。结果表明,EMD方法能按频率由高到低把复杂的非平稳信号分解成有限个IMF分量,具有自适应的特点,有效地突出轴承故障特征;而Elman神经网络能直接反映动态过程系统的特性,达到很好的识别效果。 相似文献
8.
9.
10.
为更好实现滚动轴承的状态监测和故障诊断,提出了基于小波包分析的特征向量提取算法。通过小波包分析对信号的高频和低频进行同样精度的分解,再将有效特征向量作为概率神经网络的输入,实现滚动轴承状态监测和智能化模式识别。结果表明,小波包变换可提高信号的频率分辨率,概率神经网络可充分利用故障先验知识,两者相结合能更有效地突出故障特征。 相似文献
11.
12.
滚动轴承出现损伤时,采集的振动信号呈非平稳性,采用一般的时域和频域分析方法不能准确提取出振动信号的故障特征。根据小波包多分辨、精细化的分解特性,提出一种基于小波包能量谱与主成分分析(PCA)方法的滚动轴承故障诊断算法。将振动信号进行小波包分解,得到重点频率段信息的能量谱,提取能量谱作为特征向量;利用PCA方法对特征向量降维并减小噪声信号的干扰,获得增强的故障特征;利用层次聚类方法和改进的模糊c均值聚类算法对不同类型的滚动轴承故障进行识别,两种聚类方法都准确地识别出了不同的故障类型。实例验证结果表明,所提方法能够有效地提取振动信号中的有用故障特征,实现轴承故障类型的精确诊断。 相似文献
13.
柴油机高压共轨系统运行时轨压波动信号波动较大且非线性特征较为明显,使其故障诊断较为困难。针对高压共轨系统轨压信号状态参数难以提取与识别的问题,提出一种基于集合经验模态分解(EEMD)—支持向量机(SVM)的故障诊断方法。通过EEMD将轨压信号分解为一系列固有模态函数,利用过零率曲线确定的特征提取准则提取本征模态函数中的特征值。将提取的特征值输入SVM中进行故障类型的诊断。通过AME Sim软件仿真实验获得轨压信号,对比7种不 同的特征值选择方法,最终选取能量特征值构建特征值向量并进行识别和诊断结果分析,以验证该方法的正确性与准确性。结果表明:所提出的基于EEMD—SVM的高压共轨系统故障诊断方法能够对6种不同的运行状态进行状态识别,平均故障诊断正确率可达96.11%。 相似文献
14.
以神经网络、小波分析和遗传算法等为代表的智能诊断技术,是故障诊断技术发展的一个重要方向。以传统故障字典法、BP神经网络、小波分析和遗传算法等基本原理为基础,将神经网络、小波分析和遗传算法与故障字典结合,用小波分解预处理故障信号提取故障特征,用遗传算法优化BP神经网络的结构和权值,对基于遗传小波神经网络的故障字典在模拟电路故障诊断中的应用进行研究,并结合实例验证其实际使用性能。 相似文献
15.
基于小波变换的时频域局部化特征及神经网络的非线性映射特征,以滚动轴承为例,将小波变换和神经网络的优点结合起来.运用小波变换提取滚动轴承振动信号各频率成分的能量作为故障特征参数,将其作为神经网络的输入进行训练和故障识别,利用BP网络实现了对滚动轴承的故障诊断,取得了较好的效果. 相似文献
16.
17.
为兼顾模拟电路多故障诊断的实用性和诊断精度,基于仿真诊断模型的测试性应用框架,结合深度学习与核方法的优势,提出一种多层单纯形优化核超限学习机(ML-SOKELM)方法。将有效初选后的数据集输入多层核超限学习机逐层提取故障特征并进行诊断;训练过程中,将各层核参数向量视为待优化变量,运用单纯形法对其进行联合优化。实验结果表明:与常见的深度学习方法相比,ML-SOKELM方法对主观经验依赖性更低,在训练时间大大缩短的同时,还能获得与之相当的准确率;与流行的核方法相比,ML-SOKELM方法在不同模糊度阈值下均能获得较高的诊断准确率。 相似文献
18.
19.
针对微小航天器集群的故障诊断问题,提出一种故障诊断(fault diagnosis,FD)新方法。依据小波神经网络(wavelet neural network,WNN)理论,结合航天器集群的领队航天器故障检测与系统重构问题,构建一种故障诊断框架,采用小波神经网络与神经网络相结合,得出航天器姿态故障诊断策略及卫星姿态故障重构技术,给出了领队航天器故障重构方案,并进行了仿真实验与验证。仿真结果表明,该故障诊断方法是有效性的、故障重构是可行性的。 相似文献