首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用激光选区熔化(Selective Laser Melting, SLM)技术成形制备316L不锈钢试样,探索了不同激光能量密度对金属增材制造成形质量的影响规律。选取激光功率、扫描间距、扫描速度和铺粉厚度等工艺参数,设计了正交试验,分析了激光能量密度对试件侧表面的表面粗糙度、维氏硬度、致密度、残余应力及表面形貌的影响规律。结果表明,随着激光能量密度的增大,试件侧表面的表面粗糙度与维氏硬度呈现先减小后增大的趋势,致密度和残余应力呈现先增大后减小的趋势,在激光能量密度为70.37 J/mm3时试件表面质量最佳,即最优工艺参数为激光功率P=190 W,扫描速度v=750 mm/s,铺粉厚度h=0.03 mm,扫描间距d=0.12 mm。  相似文献   

2.
采用激光选区熔化(SLM)技术制备TA32钛合金试样,研究了激光功率(200~400 W)、扫描速度(800~1 200 mm·s-1)和扫描间距(90~130μm)对成形质量及硬度的影响。结果表明:随着扫描速度增加,SLM成形TA32钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均逐渐降低;随着扫描间距增大,钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均先降低后升高;随着激光功率增加,钛合金的表面粗糙度先减小后增大,相对密度和维氏硬度均先升高后降低;适用于TA32钛合金SLM成形的激光能量密度范围为45~75 J·mm-3。  相似文献   

3.
对316L不锈钢粉进行选择性激光熔化成形,利用正交试验方法分析激光功率、扫描速度和扫描间距对成形试样相对密度、拉伸性能和微观形貌的影响,得到了最佳工艺参数。结果表明:成形试样的抗拉强度、屈服强度和相对密度均随激光功率或扫描速度的增加先增后降,随扫描间距的增加而增大;伸长率随激光功率的增加先降后增,随扫描速度的增加而增大,随扫描间距的增加变化很小;最佳工艺参数组合为激光功率310W,扫描速度960mm·s~(-1),扫描间距0.13mm;在最佳工艺下成形后试样的相对密度、抗拉强度和屈服强度均最大,分别为99.53%,613MPa和320MPa,伸长率为44.6%,成形试样的表面平整,孔隙较小,拉伸断口上的韧窝细小均匀,且球化现象较少。  相似文献   

4.
316L不锈钢材料具有耐蚀性好、成形性好、成本低等优点,在燃料电池金属双极板领域有着良好的应用前景.基于传统等材、减材加工方法难以成形复杂结构燃料电池双极板的瓶颈,使用选区激光熔化技术可实现复杂结构316L不锈钢双极板的成形制造.针对燃料电池不锈钢金属双极板的应用背景,系统研究了不同激光工艺参数(激光功率、激光扫描速度)对所成形316L不锈钢材料微观组织及双极板所需耐蚀性和表面接触电阻的影响,并对比了传统锻造316L不锈钢与选区激光熔化316L不锈钢在显微组织和性能上的差异.结果 表明,选区激光熔化成形316L不锈钢的致密度随着激光功率的增大而增大,随着扫描速度的增大而减少,并在激光功率为300W,扫描速度为1500~2000 mm/s时达到最大值.相比于具有等轴晶特征的锻造不锈钢试样,选区激光熔化成形不锈钢试样柱状晶组织有利于降低晶界对电流的阻碍作用,从而降低了表面接触电阻;同时,随着样品表面粗糙度的提高,选区激光熔化成形不锈钢试样的表面接触电阻降低.致密度高的选区激光熔化成形不锈钢试样的耐蚀性优于锻造成形不锈钢试样,且随着致密度的减小,选区激光熔化成形试样的耐蚀性逐渐降低.本研究结果表明选区激光熔化成形316L不锈钢材料可用于燃料电池金属双极板.  相似文献   

5.
采用激光选区熔化(SLM)技术制备TC4钛合金,研究了激光体能量密度对合金表面质量和致密化行为的影响。结果表明:随着激光体能量密度由33 J·mm-3增加到80 J·mm-3,合金表面粗糙度减小,表面质量提高,表面球化现象明显改善;随着激光体能量密度的增大,合金内部孔洞减少,相对密度由90.5%增大到99.3%,但过高的激光体能量密度下熔体的过度流动影响成形件的尺寸精度及性能;制备该合金的最佳参数为激光体能量密度66 J·mm-3,即激光功率250 W,扫描速度500 mm·s-1,此时合金的表面质量和致密性均较好。  相似文献   

6.
通过实验方法优化得到了粉末床激光熔化成形H13钢的工艺参数,并研究了成形样件的微观组织和拉伸性能。通过实验得到了H13钢单道成形的优化工艺区间:激光功率225 ~ 325 W,扫描速度600 ~1200 mm/s,通过块体实验得到优化的工艺参数为:激光功率275 W,扫描速度900 mm/s,扫描间距0.08 mm。微观组织显示为柱状晶粒,晶粒的宽度约为3 ~ 5 μm,长度约为10 ~ 40 μm。在优化工艺参数下成形试样的室温抗拉强度高达1 761 MPa,延伸率为2.72%。  相似文献   

7.
采用Rhino软件构建了泰森多边形不规则多孔结构,利用选区激光熔化(SLM)技术成形多孔TC4钛合金,研究了激光功率(180, 200, 220 W)、扫描速度(1 200, 1 600, 2 000 mm·s-1)、扫描间距(80, 100, 120μm)对其显微组织的影响。结果表明:随着激光功率的增大、扫描速度的减小或扫描间距的增大,SLM成形多孔TC4钛合金实体部分的微观孔洞缺陷数量和尺寸减小,相对密度提高,扫描速度是影响缺陷生成的主要原因;在激光功率220 W、扫描速度1 200 mm·s-1、扫描间距120μm条件下钛合金具有最少的微观孔洞缺陷,其相对密度可达99.2%。靠近多孔结构孔隙部分的截面存在等轴晶和平行于基板表面的柱状晶,而远离孔隙部分的组织主要由β柱状晶组成,柱状晶内部为与其长轴成±45°且平行排列的初生针状马氏体;随着激光功率的减小、扫描速度的增大或扫描间距的减小,柱状晶的宽度和初生马氏体的长度均减小,扫描间距对显微组织的影响更大。  相似文献   

8.
采用选区激光熔化工艺成形TC4钛合金试样,研究了激光功率(50~300 W)和激光扫描速度(250~1750 mm·s-1)对试样组织和性能的影响.结果表明:随着扫描速度的降低或激光功率的增大,试样成形质量提高,表面粗糙度减小,纵截面硬度增大;试样组织中均存在针状α'相和纳米级β相,较高扫描速度下的α'相尺寸较小,β相含量较低;改变扫描速度或激光功率对试样抗拉强度影响不大,较低激光功率或较高扫描速度下的断后伸长率较高;当激光功率为200 W,扫描速度为1150 mm·s-1时试样可获得较好的强度和塑性匹配.  相似文献   

9.
采用选区激光熔化(SLM)技术制备纯锌,研究了激光功率和扫描速度对其相对密度和力学性能的影响。结果表明:随激光功率增大或扫描速度减小,SLM成形纯锌的相对密度和硬度增大,显微组织均为平行于成形方向生长的柱状晶;SLM成形纯锌的最佳工艺参数为激光功率100 W、扫描速度300mm·s-1,所得试样的相对密度达99.86%,硬度为(44.7±1.2)HV,弹性模量、断后伸长率、抗拉强度、屈服强度分别为(48.6±2.4)GPa、(8.9±0.7)%、(95.5±3.3)MPa、(67.1±0.4)MPa。  相似文献   

10.
为了实现选区激光熔化成形精度工艺参数的优化,采用响应面法对选区激光熔化316L不锈钢的成形尺寸精度进行研究。结果表明,响应面模型的预测值与试验值具有良好的相关性,激光功率和扫描速度对尺寸精度具有显著的影响,且随着激光功率的增大和扫描速度的减小其成形的尺寸绝对误差越大,对选区激光熔化成形尺寸精度的控制具有重要意义。  相似文献   

11.
为了实现降低金刚石涂层粗糙度的目的,本文研究了飞秒激光功率,重复频率以及扫描速度对金刚石涂层表面粗糙度的影响,试验之后利用白光干涉仪检测抛光区域形貌以及粗糙度。试验结果表明:粗糙度随着功率的降低而减小,当功率降至100 mw以下时抛光后的粗糙度会随着功率的降低而略微的提高;重复频率对抛光后的粗糙度无显著影响;粗糙度随扫描速度的增大而减小,当扫描速度增加到1.6 mm/s之后,粗糙度会出现略微的升高。在功率100 mw,重复频率1 KHz,扫描速度1.6 mm/s的条件下,得到的粗糙度最低,约为0.14 μm,局部区域粗糙度可降至100 nm以下,并且抛光的区域相对于未抛光区域更具有致密性,基本上满足金刚石涂层低摩擦表面的要求。  相似文献   

12.
Direct metal laser sintering (DMLS) is an additive manufacturing technique for the fabrication of near net-shaped parts directly from computer-aided design data by melting together different layers with the help of a laser source. This paper presents an investigation of the surface roughness of aluminum samples produced by DMLS. A model based on an L18 orthogonal array of Taguchi design was created to perform experimental planning. Some input parameters, namely laser power, scan speed, and hatching distance were selected for the investigation. The upper surfaces of the samples were analyzed before and after shot peening. The morphology was analyzed by means of field emission scanning electron microscope. Scan speed was found to have the greatest influence on the surface roughness. Further, shot peening can effectively reduce the surface roughness.  相似文献   

13.
In this study, a nickel-based superalloy, Waspaloy, was laser heat treated with diode laser. Single laser tracks were manufactured with different laser beam power densities between 63 and 331 kW/cm2, and scanning laser beam speed ranged from 5 to 100 m/min. It was found that laser heat treatment of Waspaloy causes decrease in material hardness—the microhardness in laser tracks is about 300 HV0,1 while the microhardness of substrate is ranged from 300 to 600 HV0,1—which is a positive phenomenon for laser-assisted machining of investigated material. Impacts of laser heat treatment parameters on laser tracks properties were identified for obtaining multiple laser tracks with the most homogenous thickness. Moreover, roughness of heated layers was measured to specify surface quality after laser heat treatment. Multiple laser tracks were produced using different scanning laser beam speed and distances between laser tracks ranged from 0.125 to 1 mm. It was found that if scanning laser beam speed is 75 m/min and distance between laser tracks is equal to or lower than 0.25 mm, in microstructures of multiple laser tracks, cracks are occurring. The most suitable laser heat parameters for obtaining heated layers, and which can be used for laser-assisted machining, were identified as laser beam power density 178.3 kW/cm2, scanning laser beam speed 5 m/min, and distance between laser tracks 0.125 mm.  相似文献   

14.
为降低高沉积率激光金属沉积(Laser Metal Deposition,LMD)工艺中材料的孔隙率,研究了以镍基高温合金Inconel 718(IN718)为粉末沉积材料的高沉积率LMD工艺中主要工艺参数对材料孔隙率的影响,以及通过调整工艺参数降低材料孔隙率的方法。以目标沉积率为2kg/h的LMD工艺为基础,通过参数固化和分离的手段开展了高沉积率LMD的镀层实验,研究了主要工艺参数即激光功率、扫描速度及送粉量对LMD镀层材料孔隙率的影响,分析了不同参数下各镀层的横截面孔隙率及镀层孔隙率。实验显示:当激光功率从1 440 W增加到4 214 W时,镀层材料的孔隙率从约1.5%降低至0.02%左右;当扫描速度为500mm/min至5 000mm/min时,镀层材料孔隙率始终保持为0.07%至0.18%左右;当送粉量从0.64kg/h增加至6.48kg/h时,镀层材料孔隙率从约0.01%增加至0.84%左右。可见在高沉积率LMD工艺中,扫描速度对材料孔隙率无明显影响,而提高激光功率、限制送粉量均可有效降低LMD材料孔隙率,提高横截面孔隙率的一致性。  相似文献   

15.
为实现多层金刚石磨粒逐层激光钎焊成形,从单道扫描到单层扫描,再到多层扫描,系统研究了镍铬合金与金刚石磨粒的多层激光钎焊工艺。通过提取钎焊道与层的截面成形特征参量,对钎焊层截面成形质量进行参数化评价,并结合钎焊层表面形态,对钎焊层综合成形特性进行评价和讨论,研究了工艺参数对钎焊成形的影响。研究结果表明:激光功率与扫描速度是影响钎焊成形的重要因素,不仅影响着合金粉末的熔合程度、熔池宽度,还影响金刚石的分散状态和钎料对金刚石的浸润包裹性,最终影响钎焊层的平整性。当道与道之间的搭接率为30%~40%时,钎焊成形质量较好。在采用逆向扫描策略,扫描道数为10、固定激光功率为700 W、扫描速度为15 mm/s、光斑直径为1.5 mm、搭接率为30%的条件下,实现了多层磨粒的激光逐层钎焊成形,钎料对金刚石浸润包裹充分,钎焊层中间区域平整连续,整体成形质量好。  相似文献   

16.
The main objective of this study is to investigate the micro-milling performance of the AISI H13 with different process parameters namely laser power, scan speed, frequency, and fill spacing using 30W fiber laser marking machine and to find the optimal operation conditions for minimum surface roughness and maximum milling depth. The 108 different combinations occurred with the interaction of each level of the parameters used in this study. Therefore, the main contribution of this paper to the related literature is that it produces new evidence regarding the effects of the multi-scan times on both surface roughness and milling depth. The experimental results are showed that 0.03?mm of fill spacing, the highest scan speed (800?mm/s), lowest frequency (20?kHz), and laser power (60%) produced better surface roughness, which is 1.75???m. The deeper cavity on the geometry is obtained under the experimental combination as 200?mm/s of scan speed, 0.02?mm of fill spacing, 60% of laser power, and 40?kHz of frequency, which is 195???m. The regression analysis was used to develop a mathematical model and determine the effect of process parameters on the surface roughness and milling depth. The results of subsequent tests verifies regression models.  相似文献   

17.
本文主要研究了孔隙率等参数可控的自动超轻结构化金属零件的增材制造。以方块零件及一个具有复杂外形的零件为研究对象,分析了面向激光选区熔化工艺的可控超轻结构化零件的孔隙生成效果,重点探讨了成型工艺对超轻结构化零件孔隙率的影响。结果显示:通过计算机数值计算,可将方块CAD模型快速自动转化为可控超轻结构化模型,计算孔隙率误差可控制在±2%以内;激光深穿透现象会导致带悬垂面内壁的壁厚增加,所引起的孔隙率误差值为负值,且计算孔隙率越大,负值倾向越严重;而成型工艺性不致密导致的孔隙率误差为正值,且在相同工艺条件下,计算孔隙率越大,该误差值越小。故为使总孔隙率误差能较好地反映超轻结构网格孔隙的控制精度,应提高成型时实体部分的致密性。按45%设定孔隙率成功地将具有复杂结构的零件转化为计算孔隙率为44.62%的超轻结构化模型,采用高致密性激光选区熔化工艺成型后,实测孔隙率为42.94%,无悬垂面的内壁壁厚误差≤0.06mm,达到了较好的超轻结构控制效果。  相似文献   

18.
主要研究SLM激光快速成型过程中各工艺参数对成型件表面粗糙度的影响.影响成型件表面粗糙度的工艺参数主要有激光功率、扫描速度、搭接率、切片层厚和倾斜角度.采用正交实验方法,研究激光功率、扫描速度、搭接率三个工艺参数对快速成型件水平面表面粗糙度的影响规律、倾斜角度对斜面表面粗糙度的影响以及切片层厚对零件的垂直面的表面粗糙度影响.实验结果表明:搭接率是影响水平面表面粗糙度的最主要的因素,当其它参数相同,搭接率为30%时,表面粗糙度值最小;倾斜角度越大,表面粗糙度值越小;切片层厚越小,表面粗糙度值越小.  相似文献   

19.
准分子激光加工参数对表面形貌影响的模糊分析   总被引:1,自引:0,他引:1  
采用准分子激光微细加工方法 ,选用不同的工艺参数加工Al2 O3 陶瓷材料试件。通过表面轮廓仪测量并计算表面形貌统计参数。分析了激光加工工艺参数对表面形貌的影响 ,利用模糊分析方法 ,就激光器的放大器电压、激光脉冲频率、激光扫描速度等工艺参数对表面形貌轮廓均方根值Rq 的影响进行了评价。结果表明 ,Rq 值随激光器的放大器电压和激光脉冲频率的增大而增大 ,随激光扫描速度的增大而减小。分析得出 ,激光加工工艺参数对表面形貌的影响程度不同 ,由大到小依次为激光扫描速度、激光脉冲频率、放大器电压。因此 ,可以通过合理地选择工艺参数获得所需求的表面形貌 ,为表面微观形貌修饰提供了参考依据。  相似文献   

20.
以Ti6Al4V钛合金粉末为研究对象,在单层扫描和单道扫描实验的基础上,研究SLM工艺参数对Ti6Al4V合金材料成型性的影响,并进行了块体成型实验,通过设计正交试验及观察试样的形貌和致密度分析,最终得到Ti6Al4V合金粉末SLM块体成型的最佳工艺参数为:激光功率400W、搭接率1、扫描速度750mm/min,其致密度可以达到96.17%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号