首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 279 毫秒
1.
气凝胶以轻质、多孔、隔热等特性成为太阳能界面蒸发的理想基体。以芳纶纳米纤维(ANFs)为基体,通过共混掺杂和原位生长方法,制备了ANF载纳米银/二硫化钼(AgNPs@ANF/MoS2)复合气凝胶。形貌、结构和性能分析结果表明:复合气凝胶为狭缝型多级孔结构,具有优异的压缩回弹性、低热导率[0.03W/(m·K)]和有效的光吸收(可见光区94.7%)。在5个太阳光照射下,表面温度最高可升温至67.5℃,蒸发速率高达13.9kg/(m2·h),具有非常优越的收集和转化太阳辐射的能力,同时验证了AgNPs@ANF/MoS2复合气凝胶拥有优异的染料废水净化能力。  相似文献   

2.
采用正丁醇锆作为锆源,通过溶胶凝胶法以及超临界乙醇干燥制备氧化锆气凝胶,并使用仲丁醇铝以及二甲基二乙氧基硅烷对其掺杂制备Zr-Al以及Zr-Si复合气凝胶,利用FESEM、XRD、FT-IR以及比表面积和孔结构分析仪对气凝胶形貌、尺寸和结构进行表征。结果表明复合铝后的气凝胶密度从0.393 g/cm3降低到0.147 g/cm3,复合硅后的气凝胶比表面积从178 m2/g上升到394 m2/g,耐温性能也显著提高,FESEM照片显示,热处理后Al与Si掺杂的气凝胶形貌变化较小,Zr-Si复合气凝胶在900℃热处理4h之后比表面积仍为168 m2/g,并没有出现ZrO2的相变。氧化锆气凝胶掺杂铝及硅元素之后,有效抑制氧化锆的相变从而提高其耐温性能。  相似文献   

3.
PI气凝胶是一种多孔吸声材料,但对中低频声波的吸声效果欠佳。为了提高PI气凝胶对中低频声波的吸声性能,引入不同粒径(29μm、40μm、55μm)的玻璃微珠(HGM)作为复合相,采用溶胶-凝胶、CO2超临界干燥等工艺制备了中低频声波吸声性能良好的HGM/PI气凝胶复合材料,研究了复合材料的性质(比表面积、收缩率、密度)、微观结构以及吸声性能,分析了HGM的粒径、添加量和复合材料本身厚度对复合材料吸声性能的影响。结果表明:复合材料的密度(0.156~0.208 g/cm3)、比表面积(107.8~399.8 m2/g)与HGM的堆叠密度和添加量有关。在500~6 300 Hz范围内,30 mm厚的空白样品(PI气凝胶)的吸声系数峰值为0.39(3 150 Hz),添加HGM后,相同厚度的复合材料在1 000~2 500 Hz出现峰值,较空白样品向低频方向移动,峰值大小为0.56~0.87,均高于0.39。对比发现,在1 000~2 500 Hz范围内,粒径为29μm的HGM与PI气凝胶复合后的材料吸声性能最好,粒径为40μ...  相似文献   

4.
二维织物材料已广泛应用于太阳能界面蒸发,然而织物基太阳能蒸发器要实现吸光材料与纤维之间的强相互作用,高效的输水能力,优异的脱盐性能和高蒸发率仍然具有挑战性.我们制备了一种织物交错复合水凝胶(FICH)用于高效的太阳能界面蒸发.由于酸化碳纳米管均匀分布在水凝胶中并与大分子链形成氢键,水可以通过超亲水织物连续泵入复合水凝胶中,从而降低水的蒸发焓.薄型FICH蒸发器具有优异的光热转换性能,具有高蒸发速率(2.47 kg m2 h-1),强耐盐性,长期蒸发稳定性和耐久性.此外,FICH可以用于腐蚀性溶液和乳液的净化,在太阳能海水淡化中显示出广阔的应用前景.  相似文献   

5.
优化设计太阳能蒸发器的结构并提高光热转换效率是改善其蒸发性能的有效途径。本工作基于原位自由基聚合反应,设计了一种多层结构的聚丙烯酰胺(PAM)复合水凝胶太阳能蒸发器并研究了其性能。该水凝胶由底部PAM/纳米纤维素(PAM/CNF)水运输层、中部PAM/碳纳米管/氮化钛(PAM/CNTs/TiN)光热转换层以及顶部“孤岛”状PAM/空心MXene微球(PAM/HSMX)构成的粗糙表面层组成。这种设计构建的PAM/CNF-PAM/CNTs/TiN-PAM/HSMX多层结构水凝胶太阳能蒸发器(ML-SVG)不仅能够提高光热转换效率,减少热量的损耗,而且促进了水分的运输,从而赋予ML-SVG优良的蒸发性能。ML-SVG在2kW·m-2太阳光照射下的蒸发速率达到2.2kg·m-2·h-1,同时具有优良的循环使用性能,高效的污水净化和盐水淡化性能。  相似文献   

6.
以钛酸丁酯为原料, 乙酸为有机配体, 甲酰胺为干燥控制化学添加剂(DCCA), 采用溶胶-凝胶法和溶剂置换等后续工艺, 实现了块状TiO2气凝胶催化剂的常压干燥法制备, 并考察了有机配体对气凝胶结构性能的影响。采用XRD、BET、SEM、EDS及DSC-TG对样品进行表征。结果表明: 当有机配体与钛酸丁酯物质的量之比为0.9时, 制备的样品性能最佳, 该TiO2气凝胶样品为非晶态, 表观密度为0.25 g·cm-3, 比表面积716.5 m2·g-1, 平均孔径19.1 nm; 在850℃大气气氛下热处理2 h后, 比表面积为122.4 m2·g-1, 平均孔径23.4 nm, 具有较高光催化活性; 经1000℃热处理后, TiO2晶型仍为锐钛矿相, 热稳定性较好, 光催化活性有所降低。未采用有机配体制备的TiO2气凝胶表观密度为0.57 g·cm-3, 比表面积为482.2 m2·g-1。有机配体的使用更有利于制备出表观密度较小、比表面积较高的TiO2气凝胶。  相似文献   

7.
朱薇  江坤  游峰  姚楚  王昆  江学良 《复合材料学报》2022,39(5):2215-2225
为了有效去除废水中的染料,本论文以海藻酸钠(SA)和氧化石墨烯(GO)为原料,采用一步水热法制备海藻酸钠/氧化石墨烯(SA/GO)复合水凝胶,并通过冷冻干燥法得SA/GO复合气凝胶。利用FT-IR、XRD、SEM、TEM、N2等温吸附-脱附、接触角来表征SA/GO复合气凝胶并研究其吸附性能。结果表明,SA/GO复合气凝胶是具有三维立体结构的多孔材料,BET比表面积约为580.54 m2·g-1。讨论了SA/GO复合气凝胶对亚甲基蓝(MB)溶液吸附过程的影响因素,在碱性条件下,吸附效果最好,吸附率可达99.41%,吸附量可达248.53 mg·g-1,并表现出优异的循环再生性。  相似文献   

8.
以高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨(GO)为原料,采用乙二胺还原和液氮梯度冷冻干燥制备纤维素纳米纤丝/石墨烯(CNF/rGO)复合气凝胶,并通过红外光谱、X射线衍射、X射线光电子能谱、扫描电镜、比表面积(BET)、电化学测试仪等对其进行性能表征。结果表明,所制备的CNF/rGO复合气凝胶具有完整的三维网络结构,当CNF和GO质量比为10∶1时,复合气凝胶的平均孔径为13nm,比表面积为110.2m2/g,在电流密度为1A/g下获得的质量比电容约为156F/g。  相似文献   

9.
采用化学交联、溶胶-凝胶和表面改性的方法,制得疏水性聚酰亚胺(PI)增强SiO2气凝胶复合材料。以均苯四甲酸二酐(PMDA)和4’,4’-二氨基二苯醚(ODA)为聚合单体,3-氨丙基-三己氧基硅烷(APTES)为封端剂,合成APTES封端的聚酰亚胺,与正硅酸乙酯(TEOS)混合形成前驱体。采用酸碱两步催化凝胶、湿凝胶依次进行表面疏水改性、溶液置换及CO2超临界干燥,得到聚酰亚胺增强SiO2气凝胶复合材料样品。利用FTIR、SEM、比表面积测试仪、万能材料试验机、接触角分析仪等表征样品的化学组成、微观形貌、孔结构、力学性能及疏水性能等。结果表明:PI质量分数为6wt%的样品密度为0.124 g/cm3,比表面积为724 m2/g,平均孔径尺寸为14 nm,接触角为134°,抗压强度为0.295 MPa。20wt%含量的PI增强SiO2气凝胶样品抗压强度为0.556 MPa。  相似文献   

10.
优异的隔热材料在建筑、航空航天和体育设备等领域有着广泛的应用需求.然而,在实际应用中,隔热材料在不同温度和湿度条件下,其性能往往会恶化.因此,构建在极端湿热环境下仍具有出色的隔热性能的块状材料是非常重要的.在本工作中,我们构思了一种绿色制备策略,即通过静电纺丝和冷冻干燥技术来制备超疏水且可压缩的聚偏氟乙烯/聚酰亚胺(PVDF/PI)纳米纤维复合气凝胶. PVDF纳米纤维和PI纳米纤维分别充当疏水性纤维骨架和机械支撑骨架,形成具有良好机械柔韧性的坚固的三维框架. PVDF/PI气凝胶在室温下具有出色的超疏水特性(水接触角为152°)和低导热性(31.0 m W m-1K-1).同时,在100%湿度(80℃)下, PVDF/PI气凝胶仅显示出48.6 m W m-1K-1的低热导率,其性能优于大多数商业绝热材料.因此,新型的PVDF/PI复合气凝胶有望成为高温和高湿环境中应用的优良隔热材料.  相似文献   

11.
Solar energy-driven water evaporation is a promising sustainable strategy to purify seawater and contaminated water. However, developing solar evaporators with high water evaporation rates and excellent salt resistance still faces a great challenge. Herein, inspired by the long-range ordered structure and water transportation capability of lotus stem, a biomimetic aerogel with vertically ordered channels and low water evaporation enthalpy for high-efficiency solar energy-driven salt-resistant seawater desalination and wastewater purification is developed. The biomimetic aerogel consists of ultralong hydroxyapatite nanowires as heat-insulating skeletons, polydopamine-modified MXene as a photothermal material with broadband sunlight absorption and high photothermal conversion efficiency, polyacrylamide, and polyvinyl alcohol as reagents to lower the water evaporation enthalpy and as glues to enhance the mechanical performance. The honeycomb porous structure, unidirectionally aligned microchannels, and nanowire/nanosheet/polymer pore wall endow the biomimetic aerogel with excellent mechanical properties, rapid water transportation, and excellent solar water evaporation performance. The biomimetic aerogel exhibits a high water evaporation rate (2.62 kg m−2 h−1) and energy efficiency (93.6%) under one sun irradiation. The superior salt-rejecting ability of the designed water evaporator enables stable and continuous seawater desalination, which is promising for application in water purification to mitigate the global water crisis.  相似文献   

12.
Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar‐to‐vapor efficiency, low environmental impact, and off‐grid capability. However, solute accumulation at the heating interface has severely impacted the performance and long‐term stability of current solar evaporation systems. Here, a self‐regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel‐array in a natural wood substrate is reported. Upon solar evaporation, salt concentration gradients are formed between the millimeter‐sized drilled channels (with a low salt concentration) and the microsized natural wood channels (with a high salt concentration) due to their different hydraulic conductivities. The concentration gradients allow spontaneous interchannel salt exchange through the 1–2 µm pits, leading to the dilution of salt in the microsized wood channels. The drilled channels with high hydraulic conductivities thus function as salt‐rejection pathways, which can rapidly exchange the salt with the bulk solution, enabling the real‐time self‐regeneration of the evaporator. Compared to other salt‐rejection designs, the solar evaporator exhibits the highest efficiency (≈75%) in a highly concentrated salt solution (20 wt% NaCl) under 1 sun irradiation, as well as long‐term stability (over 100 h of continuous operation).  相似文献   

13.
Solar-driven interfacial evaporation provides a promising method for sustainable freshwater production. However, high energy consumption of vapor generation fundamentally restricts practicality of solar-driven wastewater treatment. Here a facile strategy is reported to control the hydration of polymer network in hydrogels, where densely cross-linked polymers serving as a framework are functionalized by a highly hydratable polymeric network. The hydration of polymer chains generates a large amount of weakly bounded water molecules, facilitating the water evaporation. As a result, the hydrogel-based solar evaporator can extract water from a variety of contaminants such as salts, detergents, and heavy metal components using solar energy with long-term durability and stability. This work demonstrates an effective way to tune the interaction between water and materials at a molecular level, as well as an energy-efficient water treatment technology toward wastewater containing complex contaminants.  相似文献   

14.
The integration of fog collection and solar-driven evaporation has great significance in addressing the challenge of the global freshwater crisis. Herein, a micro/nanostructured polyethylene/carbon nanotubes foam with interconnected open-cell structure (MN-PCG) is fabricated using an industrialized micro extrusion compression molding technology. The 3D surface micro/nanostructure provides sufficient nucleation points for tiny water droplets to harvest moisture from humid air and a fog harvesting efficiency of 1451 mg cm−2 h−1 is achieved at night. The homogeneously dispersed carbon nanotubes and the graphite oxide@carbon nanotubes coating endow the MN-PCG foam with excellent photothermal properties. Benefitting from the excellent photothermal property and sufficient steam escape channels, the MN-PCG foam attains a superior evaporation rate of 2.42 kg m−2 h−1 under 1 Sun illumination. Consequently, a daily yield of ≈35 kg m−2 is realized by the integration of fog collection and solar-driven evaporation. Moreover, the robust superhydrophobicity, acid/alkali tolerance, thermal resistance, and passive/active de-icing properties provide a guarantee for the long-term work of the MN-PCG foam during practical outdoor applications. The large-scale fabrication method for an all-weather freshwater harvester offers an excellent solution to address the global water scarcity.  相似文献   

15.
The integration of 2D-graphitic carbon (G) with 1D-carbon nanofiber (CF) allows for the unique properties of 2D graphitic carbon to be combined with the low densities, mechanical performance, and high surface area required for applications across the energy and sustainability landscape. Through a combination of experiments and numerical modeling, we demonstrate the transformation of standard egg-white (EW) proteins into an ultralightweight G-CF aerogel with a multiscale structure. The resulting covalently-bonded hierarchical structure, derived from the complex underlying protein configuration, exhibits a density that is two orders of magnitude lower than existing state-of-the-art materials. We apply this material to the challenges of desalination and water purification, notably demonstrating that the G-CF aerogel significantly improves upon existing materials, capturing 98.2% of ionic impurities and 99.9% of nano/microplastic contamination from seawater.  相似文献   

16.
Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m?2 h?1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m?2 day?1 in a 25 day consecutive outdoor test.  相似文献   

17.
Solar vapor generation is a promising method to efficiently produce fresh water. However, the insufficient vapor yields under natural daylight restrict its practical applications, and the basic evaporation mechanisms are deficient for reasonable design of evaporator structure. Here, hydrophobic nano-confined water molecule channels (NCWMCs) are demonstrated, which can reduce the vaporization enthalpy for water evaporation and achieve a record vapor generation rate of 1.25 kg m−2 h−1 under 0.5 sun irradiation. Molecular dynamics simulations reveal the cluster-evaporation process in the NCWMC system. As a result, the evaporator with NCWMC system can effectively purify seawater and wastewater samples using this environmentally friendly strategy.  相似文献   

18.
We report continuous carbon nanotube (CNT) fibers and yarns dry-drawn directly from water-assisted chemical vapor deposition (CVD) grown forests with about 1-mm height. As-drawn CNT fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile organic liquid. CNT fibers are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman microscopy, and wide-angle X-ray diffraction. Mechanical properties and electrical conductivity of the post-treated CNT fibers are investigated. The resulting fibers show the work of rupture of 30 J/g and DC electrical conductivity of 5.0 × 104 S/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号