首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study tested the effects of energy from glucogenic (glucose; GG) or lipogenic (palm olein; LG) substrates at low (LMP) and high (HMP) metabolizable protein levels on whole-body energy and N partitioning of dairy cattle. Six rumen-fistulated, second-lactation Holstein-Friesian dairy cows (97 ± 13 d in milk) were randomly assigned to a 6 × 6 Latin square design in which each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of rest. A total mixed ration consisting of 42% corn silage, 31% grass silage, and 27% concentrate (dry matter basis) was formulated to meet 100 and 83% of net energy and metabolizable protein requirements, respectively, and was fed at 90% of ad libitum intake by individual cow. Abomasal infusion treatments were saline (LMP-C), isoenergetic infusions (digestible energy basis) of 1,319 g/d of glucose (LMP-GG), 676 g/d of palm olein (LMP-LG; major fatty acid constituents are palmitic, oleic, and linoleic acid), or 844 g/d of essential AA (HMP-C), or isoenergetic infusions of 1,319 g/d of glucose + 844 g/d of essential AA (HMP-GG) or 676 g/d of palm olein + 844 g/d of essential AA (HMP-LG). The experiment was conducted in climate respiration chambers to determine energy and N balance in conjunction with milk production and composition, nutrient digestibility, and plasma constituents. Infusion of GG and LG decreased dry matter intake, but total gross energy intake from the diet plus infusions was not affected by GG or LG. Furthermore, GG or LG did not affect total milk, protein, or lactose yields. Infusing GG or LG at the HMP level did not affect milk production differently than at the LMP level. Infusion of GG stimulated energy retention in body tissue, increased plasma glucose and insulin concentrations, decreased lipogenic metabolites in plasma, and decreased milk fat yield and milk energy output. Nitrogen intake decreased and milk N efficiency increased in response to GG, and N retention was not affected. Infusion of LG tended to increase metabolizable energy intake, increased milk fat yield and milk energy output, increased plasma triacylglycerides and long-chain fatty acid concentrations, and had no effect on energy retention. Infusion of LG decreased N intake but did not affect milk N efficiency or N retention. Compared with the LMP level, the HMP level increased dry matter intake, gross and metabolizable energy intake, and total milk, fat, protein, and lactose yields. Milk energy output increased at the HMP level, and protein level did not affect total energy retention. Heat production increased at the HMP level, but only when GG and LG were infused. The HMP level increased N intake, milk N output, and plasma urea concentration, tended to increase N retention, and decreased milk N efficiency. Regardless of protein level, GG promoted energy retention and improved milk N efficiency, but not through increased milk protein yield. Infusion of LG partitioned extra energy intake into milk and had no effect on milk N efficiency.  相似文献   

2.
Mammary gland utilization of AA and other metabolites in response to supplemental energy from protein (PT) and supplemental energy from fat (FT) was tested in a 2 × 2 factorial arrangement using a randomized complete block design. Fifty-six Holstein-Friesian dairy cows were adapted during a 28-d control period to a basal total mixed ration consisting of 34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter (DM) basis. Experimental rations were fed for 28 d immediately following the control period and consisted of (1) low protein, low fat (LP/LF), (2) high protein, low fat (HP/LF), (3) low protein, high fat (LP/HF), and (4) high protein, high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically [net energy (MJ/d) basis] with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on a DM basis) and 0.68 kg/d hydrogenated palm fatty acids on a DM basis. Arterial and venous blood samples were collected on d 28 of both periods. Isoenergetic supplements (MJ/d) of protein and fat independently and additively increased milk yield, PT increased protein yield, and FT increased fat yield. A PT × FT interaction affected arterial concentration of all essential AA (EAA) groups, where they increased in response to PT by a greater magnitude at the LF level (on average 35%) compared with the HF level (on average 14%). Mammary gland plasma flow was unaffected by PT or FT. Supplementation with PT tended to decrease mammary clearance of total EAA and decreased group 1 AA clearance by 19%. In response to PT, mammary uptake of total EAA and group 2 AA increased 12 and 14%, respectively, with significantly higher uptake of Arg, Ile, and Leu. Energy from fat had no effect on mammary clearance or uptake of any AA group. The mammary gland uptake:milk protein output ratio was not affected by FT, whereas PT increased this ratio for EAA and group 2 AA. Arterial plasma insulin concentration decreased in response to FT, in particular on the HP/HF diet, as indicated by a PT × FT interaction. Arterial concentrations of nonesterified fatty acids, triacylglycerol, and long-chain fatty acids increased in response to FT, and concentrations of β-hydroxybutyrate and acetate decreased in response to FT only at the HP level. Mammary clearance and uptake of triacylglycerol and long-chain fatty acids increased in response to FT. Energy from PT and FT increased lactose yield despite no change in arterial glucose concentration or mammary glucose uptake. Mammary-sequestered glucose with PT or FT was used in the same amount for lactose synthesis, and a positive net mammary glucose balance was found across all treatments. Results presented here illustrate metabolic flexibility of the mammary gland in its use of aminogenic versus lipogenic substrates for milk synthesis.  相似文献   

3.
《Journal of dairy science》2022,105(9):7354-7372
This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.  相似文献   

4.
《Journal of dairy science》2019,102(11):9883-9901
Variations of mammary gland (MG) metabolism were studied in dairy cows in response to diets containing 2 levels of net energy of lactation [NEL; 25.0 and 32.5 Mcal/d for low (LE) and high energy (HE), respectively], combined with 2 levels of metabolizable protein [MP, 1,266 and 2,254 g/d of protein digestible in the intestine for low (LP) and high protein (HP), respectively] in a 2 × 2 factorial arrangement. Four cows received 4 diets (LELP, HELP, LEHP, and HEHP) in a 4 × 4 Latin square design with 2-wk experimental periods. Milk production and feed intake were measured on the last 5 d of each period, whereas MG net uptake of AA was determined on d 13. Efficiencies were estimated as the sum of measured milk true protein yield (MPY) and of estimations of metabolic fecal and scurf proteins multiplied by their respective AA profile and divided by the estimated AA supply minus the AA endogenous urinary loss. The increased MPY in the HE compared with the LE diets (higher by 123 g/d) was accompanied by increased mammary plasma flow and MG uptake of the nonessential AA (NEAA) and the essential AA (EAA), except for branched-chain AA. In contrast, the increase in MPY (higher by 104 g/d) observed in the HP compared with the LP diets was linked to increased MG uptake of EAA without a change in mammary plasma flow and a decreased NEAA uptake. Because MG uptake of total AA-N was almost equal to cows' milk output on a nitrogen basis, these different mechanisms involve a large MG flexibility, with variable synthesis of NEAA. In addition, MP efficiency did not increase only through increased MPY in the HE compared with the LE diets but also through metabolic fecal protein, estimated to increase (by 65 g/d) with dry matter intake. The MPY increased in the HP compared with the LP diets, but the increase was smaller than the calculated increase (greater by 993 g/d) in MP supply. The highest MG clearance rates of individual EAA could suggest that Met, His, and Lys were limiting in LP, and Met was the most limiting AA in HP. Interestingly, a similar hypothesis could be stated by analyzing estimated AA efficiencies. The highest efficiencies among EAA, observed for His in HELP and for Met with the other diets, could indicate that they were the most limiting AA in these respective diets, whereas other EAA (including Lys) efficiencies varied with MP efficiency. The MG metabolic flexibility with regard to individual AA utilization partially contributes to the anabolic fate of AA through MPY; however, other export proteins also contribute to variations in MP and AA efficiencies.  相似文献   

5.
The response of splanchnic tissue metabolism to different levels of metabolizable protein (MP) was measured in 6 catheterized multiparous lactating Holstein cows. Three diets, balanced to provide similar energy intakes and increasing amounts of MP (g/d)-1922 (low), 2264 (medium), and 2517 (high)-were fed during 21-d experimental periods according to a replicated Latin square. On d 18, 19, or 20, six hourly blood samples were collected simultaneously from the portal and hepatic veins plus an artery to determine net fluxes of nutrients across the portal-drained viscera and the liver. Yields of milk and protein increased, as did urinary N excretion with increasing MP. Portal absorption of essential amino acids (EAA) increased linearly with increasing MP supply, as did liver removal of His, Met, and Phe. In contrast, liver removal of the branched-chain AA (BCAA) and lysine was unaffected by diets. With increasing MP, the ratio of milk output to postliver supply of BCAA, Thr, and Lys decreased linearly, indicating oxidation of these AA in the peripheral tissues. Concomitant to a decreased catabolism of EAA in the liver (His, Met, Phe, and Thr) and/or in peripheral tissues (BCAA, Lys, and Thr), the efficiency of transfer of absorbed EAA into milk protein decreases markedly as protein supply increases. The efficiency of transfer of absorbed AA into milk also varies greatly between AA. These 2 important factors should be taken into account when building predictive schemes for milk protein output.  相似文献   

6.
An arteriovenous technique, combined with a 30-h i.v. infusion of [5-(13)CH3]Met and [5,5,5-(2)H]Leu, was used to monitor mammary uptake of free amino acid (AA) and to estimate the proportion of casein synthesized from circulating peptides in goats in early and late lactation. At both stages, kinetics was performed on the last day of consecutive 5.5-d periods. The first period was an i.v. infusion of saline and the second an i.v. infusion of lysine (8.9 g/h) plus methionine (2 g/h). Net uptake of essential AA and protein yields were higher in early than in late lactation. Uptake of free Met, His, and Pro was less than, uptake of Tyr and Lys was equal to, and uptake of Arg, Leu, Val, and Ile was greater than milk protein synthesis. Peptide uptake, estimated from the difference in casein and plasma free AA enrichment, accounted for a larger fraction of casein-Met (17 vs. 8%) and casein-Leu (27 vs. 12%) in late than in early lactation. Small decreases in mammary blood flow, AA transport activity, and AA concentrations accounted for the lower uptake of AA in late compared with early lactation. Based on our studies of several AA, the utilization of circulating peptides for casein synthesis appears to be a general phenomenon.  相似文献   

7.
8.
Specific AA affect rates of milk protein synthesis in the mammary glands of lactating cows. The objective of this study was to quantify the rate of αS1-casein synthesis in response to Ile, Leu, Met, and Thr supplementation, and to test the single-limiting AA theory for milk protein synthesis by exploring interactions among these AA. Effects of Ile, Leu, Met, and Thr were studied in vitro with a composite design containing a central point repeated 4 times, with 2 axial points per AA and a complete 24 factorial. Other AA were at the concentration in Dulbecco's modified Eagle medium/F12 medium (DMEM). The experiment was replicated with mammary tissue from 5 lactating cows. Mammary tissue slices (0.12 ± 0.02 g) were incubated for 4 h at 37°C in 5 mL of treatment medium containing 2H5-Phe. Caseins were precipitated from cell homogenate supernatants. Enrichment with 2H5-Phe of the N[34]LLRFFVAPFPE αS1 peptide was determined by matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF-TOF), which was used to determine enrichment of Phe in the transfer (t)RNA pool and αS1-casein fractional synthesis rates (CFSR). Data were analyzed with a polynomial mixed model containing linear, quadratic, and 2-factor interactions for Ile, Leu, Met, and Thr, and cow and residual as random factors. Interactions were not significant at P < 0.1 and were removed from the model. Increasing concentrations of Ile, Leu, Met, and Thr simultaneously increased CFSR curvilinearly with a predicted maximum response of 4.32 ± 0.84%/h at 63% of DMEM concentrations. The maximum response to each of the 4 AA was at 71, 49, 60, and 32% of the concentration in DMEM, for Ile, Leu, Met, and Thr, respectively. These values correspond to 270, 120, 440, and 140% the plasma concentrations of Ile, Leu, Met, and Thr observed in lactating cows fed to meet National Research Council requirements, respectively. The CFSR estimated at those maxima were similar among AA (3.6 ± 0.6%/h). Individual AA effects on CFSR did not correlate with mammalian target of rapamycin (mTOR) signaling. Independent responses of CFSR to individual essential AA observed in this study contradict the single-limiting AA theory assumed in current requirement systems. The saturable responses in CFSR to these 4 AA also highlight the inadequacy of using a fixed postabsorptive AA efficiency approach for determining AA requirements for milk protein synthesis.  相似文献   

9.
The objective of this study was to evaluate local molecular adaptations proposed to regulate protein synthesis in the mammary glands. It was hypothesized that AA and energy-yielding substrates independently regulate AA metabolism and protein synthesis in mammary glands by a combination of systemic and local mechanisms. Six primiparous mid-lactation Holstein cows with ruminal cannulas were randomly assigned to 4 treatment sequences in a replicated incomplete 4 × 4 Latin square design experiment. Treatments were abomasal infusions of casein and starch in a 2 × 2 factorial arrangement. All animals received the same basal diet (17.6% crude protein and 6.61 MJ of net energy for lactation/kg of DM) throughout the study. Cows were restricted to 70% of ad libitum intake and abomasally infused for 36 h with water, casein (0.86 kg/d), starch (2 kg/d), or a combination (2 kg/d starch + 0.86 kg/d casein) using peristaltic pumps. Milk yields and composition were assessed throughout the study. Arterial and venous plasma samples were collected every 20 min during the last 8 h of infusion to assess mammary uptake. Mammary biopsy samples were collected at the end of each infusion and assessed for the phosphorylation state of selected intracellular signaling molecules that regulate protein synthesis. Animals infused with casein had increased arterial concentrations of AA, increased mammary extraction of AA from plasma, either no change or a trend for reduced mammary AA clearance rates, and no change in milk protein yield. Animals infused with starch had increased milk and milk protein yields, increased mammary plasma flow, reduced arterial concentrations of AA, and increased mammary clearance rates and net uptake of some AA. Infusions of starch increased plasma concentrations of glucose, insulin, and insulin-like growth factor-I. Starch infusions increased phosphorylation of ribosomal protein S6 and endothelial nitric oxide synthase, consistent with changes in milk protein yields and plasma flow, respectively. Phosphorylation of the mammalian target of rapamycin was increased in response to starch only when casein was also infused. Thus, cell signaling molecules involved in the regulation of protein synthesis differentially responded to these nutritional stimuli. The hypothesized independent effects of casein and starch on animal metabolism and cell signaling were not observed, presumably because of the lack of a milk protein response to infused casein.  相似文献   

10.
In current dairy production systems, an average of 25% of dietary N is captured in milk, with the remainder being excreted in urine and feces. About 60% of total N losses occur postabsorption. Splanchnic tissues extract a fixed proportion of total inflow of each essential AA (EAA). Those EAA removed by splanchnic tissues and not incorporated into protein are subjected to catabolism, with the resulting N converted to urea. Splanchnic affinity varies among individual EAA, from several fold lower than mammary glands’ affinity for the branched-chain AA to similar or higher affinity for Phe, Met, His, and Arg. On average, 85% of absorbed EAA appear in peripheral circulation, indicating that first-pass removal is not the main source of loss. Essential AA in excess of the needs of the mammary glands return to general circulation. High splanchnic blood flow dictates that a large proportion of EAA that return to general circulation flow through splanchnic tissues. In association with this constant recycling, EAA are removed and catabolized by splanchnic tissues. This results in splanchnic catabolism equaling or surpassing the use of many EAA for milk protein synthesis. Recent studies have demonstrated that EAA, energy substrates, and hormones activate signaling pathways that in turn regulate local blood flow, tissue extraction of EAA, and rates of milk protein synthesis. These recent findings would allow manipulation of dairy diets to maximize mammary uptake of EAA and reduce catabolism by splanchnic tissues. Dairy cattle nutrient requirement systems consider EAA requirements in aggregate as metabolizable protein (MP) and assume a fixed efficiency of MP use for milk protein. Lysine and Met sufficiency is only considered after MP requirements have been met. By doing so, requirement systems limit the scope of diet manipulation to achieve improved gross N efficiency. Therefore, this review focuses on understanding the dynamics of EAA metabolism in mammary and splanchnic tissues that would lead to improved requirement prediction systems. Inclusion of variable individual EAA efficiencies derived from splanchnic and mammary responses to nutrient and hormonal signals should help reduce dietary protein levels. Supplementing reduced crude protein diets with individual EAA should increase gross N efficiency to more than 30%, reducing N excretion by the US dairy industry by 92,000 t annually.  相似文献   

11.
Five mid-lactation multicatheterized Jersey cows were used in a 4 × 4 Latin square design to investigate whether the increase in milk N yield associated with diets rich in starch versus fiber could originate from changes in the splanchnic AA metabolism and if these changes depended upon the dietary crude protein (CP) content. Four isoenergetic diets were formulated to provide 2 different carbohydrate compositions [diets rich in starch (350 g of starch and 310 g of neutral detergent fiber/kg of dry matter) versus rich in fiber (45 g of starch and 460 g of neutral detergent fiber/kg of dry matter)] crossed by 2 different CP contents (12.0 vs. 16.5% CP). At the end of each treatment period, 6 hourly blood samples were collected from the portal and hepatic veins as well as the mesenteric artery to determine net nutrient fluxes across the portal-drained viscera (PDV), liver, and total splanchnic tissues. Dry matter and calculated energy intake as well as total absorbed energy were similar across treatments. However, the net portal appearance (NPA) of acetate, total volatile fatty acids, and β-hydroxybutyrate were higher with diets rich in fiber versus starch, whereas that of oxygen, glucose, butyrate, and insulin were lower. Concomitant to these changes, the percentage of N intake recovered as total AA (TAA) in the portal vein was lower for diets rich in fiber versus starch (42.3 vs. 51.4%, respectively), without, however, any difference observed in the NPA of the main AA used as energy fuels by the PDV (Glu, Gln, and Asp). Despite a higher NPA of TAA with starch versus fiber diets, no differences in the net hepatic flux of TAA, essential and nonessential AA were observed, resulting in a higher (+22%) net splanchnic release of AA and, hence, a greater (+7%) milk N yield. The net hepatic flux and hepatic fractional removal of none of the individual AA was affected as the main carbohydrate changed from fiber to starch, except for Gly and Lys, which were higher for the latter. After correcting for differences in NPA of TAA, the net hepatic uptake of TAA tended to be lower with starch versus fiber diets. The higher transfer of N from feed to milk with diets rich in starch is not the consequence of a direct sparing AA effect of glucogenic diets but rather the result of lower energy requirements by the PDV along with a higher microbial N flow to the duodenum. A better AA use by peripheral tissues with starch versus fiber diets was also hypothesized but more studies are warranted to clarify this issue.  相似文献   

12.
《Journal of dairy science》2023,106(6):4002-4017
We previously observed that diets with reduced starch concentration decreased yields of milk and milk protein in dairy cows fed low metabolizable protein diets. Supplementation of reduced-starch diets with a lipid source may attenuate or eliminate production losses. Our objective was to investigate the effects of partially replacing ground corn with soyhulls plus a palmitic acid-enriched supplement on dry matter (DM) intake, milk yield and composition, plasma AA concentration, and N and energy utilization in cows fed low metabolizable protein diets (mean = −68 g/d balance) with or without rumen-protected Met, Lys, and His (RP-MLH). Sixteen multiparous Holstein cows averaging (mean ± standard deviation) 112 ± 28 d in milk, 724 ± 44 kg of body weight, and 46 ± 5 kg/d of milk in the beginning of the study were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d, consisting of 14 d for diet adaptation and 7 d for data and sample collection. Diets were fed as follows: (1) high starch (HS), (2) HS plus RP-MLH (HS+AA), (3) reduced starch plus a palmitic acid-enriched supplement (RSPA), and (4) RSPA plus RP-MLH (RSPA+AA). The HS diet contained (DM basis) 26% ground corn and 7% soyhulls, and the RSPA diet had 10% ground corn, 22% soyhulls, and 1.5% palmitic acid. The HS diet averaged (DM basis) 32.6% starch and 4% ether extract, while starch and ether extract concentrations of the RSPA diet were 21.7 and 5.9%, respectively. All 4 diets had (DM basis) 40% corn silage, 5% mixed-mostly grass haylage, 5% grass hay, and 50% concentrate. Diets did not affect DM intake and milk yield. Contrarily, feeding RSPA and RSPA+AA increased yields of energy-corrected milk (47.0 vs. 44.8 kg/d) and milk fat (1.65 vs. 1.50 kg/d) compared with HS and HS+AA. Milk fat concentration tended to decrease when RP-MLH was supplemented to HS, but no change was seen when added to RS (starch level × RP-MLH interaction). Milk and plasma urea N increased, and milk N efficiency decreased in cows fed RSPA and RSPA+AA versus HS and HS+AA. Apparent total-tract digestibilites of crude protein and neutral detergent fiber, as well as urinary urea N and total N excretion, were greater in cows offered RSPA and RSPA+AA than HS and HS+AA. Plasma Met and His concentrations increased with supplemental RP-MLH. Intake of gross energy and digestible energy and the output of urinary and milk energy were all greater with feeding RSPA and RSPA+AA versus HS and HS+AA. In summary, partially replacing ground corn with soyhulls plus palmitic acid in diets supplemented or not with RP-MLH increased milk fat yield and fiber digestibility and maintained DM intake and milk yield, but with decreased milk N efficiency and elevated urinary N excretion.  相似文献   

13.
《Journal of dairy science》2021,104(9):9784-9800
Our objective was to investigate the interactions between starch level and rumen-protected Met, Lys, His (RP-MLH) on milk yield, plasma AA concentration, and nutrient utilization in dairy cows fed low metabolizable protein diets (mean = −119 g/d of metabolizable protein balance). Sixteen multiparous Holstein cows (138 ± 46 d in milk, 46 ± 6 kg/d in milk) were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Dietary starch level varied by replacing (dry matter basis) pelleted beet pulp and soyhulls with ground corn resulting in the following treatments: (1) 20% pelleted beet pulp and 10% soyhulls (reduced starch = RS), (2) RS plus RP-MLH (RS+AA), (3) 30% ground corn (high starch = HS), and (4) HS plus RP-MLH (HS+AA). Dietary starch concentrations averaged 12.3 and 34.4% for RS and HS basal diets, respectively. Diets were supplemented with RP-MLH products to supply digestible Met, Lys, and His. Compared with RS and RS+AA diets, HS and HS+AA diets increased yields of milk (37.9 vs. 40.1 kg/d) and milk protein (1.07 vs. 1.16 kg/d) and decreased dry matter intake (25.9 vs. 25.2 kg/d), milk urea N (12.6 vs. 11.0 mg/dL), and plasma urea N (13.3 vs. 11.6 mg/dL). Milk N efficiency was greater in cows fed the HS and HS+AA than RS and RS+AA diets (28.9 vs. 25%), and RP-MLH supplementation improved milk true protein concentration. Starch level × RP-MLH interactions were observed for plasma concentrations of Arg and Lys, with RP-MLH being more effective to increase plasma Arg (+16%) and Lys (+23%) when supplemented to the RS than the HS basal diet. Replacing pelleted beet pulp and soyhulls with ground corn lowered the plasma concentrations of all essential AA except Met and Thr. In addition, the plasma concentrations of His and Met increased with RP-MLH. The apparent total-tract digestibilities of neutral and acid detergent fiber were lower, and those of starch and ether extract greater in cows offered the HS and HS+AA diets than RS and RS+AA diets. Urinary excretion of urea N decreased by replacing pelleted beet pulp and soyhulls with ground corn. Enteric CH4 production, CH4 yield, and CH4 intensity all decreased in the HS and HS+AA versus RS and RS+AA diets. Diets did not affect the intakes of gross energy, metabolizable energy, and net energy of lactation. In contrast, digestible energy intake increased with feeding the RS and RS+AA diets, whereas CH4 energy decreased in cows fed the HS and HS+AA diets. Supplementation with RP-MLH had no effect on energy utilization variables. Overall, the lack of interactions between dietary starch level and RP-MLH supplementation on most variables measured herein showed that the effects of starch intake and RP-MLH were independent or additive.  相似文献   

14.
15.
Rates of secretion of components into milk are a function of precursor concentrations and parameters that describe expression of the milk synthetic enzymes and their sensitivity to precursor concentrations. To establish the enzymatic sensitivities of milk fat yield and mammary acetate utilization to circulating acetate concentration, lactating cows were infused for 10 h with 0 or 40 g of acetate/h in an external iliac artery supplying one udder half. In addition, to investigate the possibility that energy supply influences the milk protein response to an elevated amino acid (AA) concentration, 2 different AA profiles were infused with and without acetate. Six cows, fed a total mixed ration of 21% crude protein ad libitum, were infused with AA at 0 g/h, 30 g/h in the profile of rumen microbes, or 30 g/h in the profile of milk proteins, in a 3 × 2 factorial arrangement with the 2 acetate treatments of 0 and 40 g/h, all in a 6 × 6 Latin square. Amino acid infusion caused a 60% increase, on average, in plasma concentration of AA entering the infused udder half. From the microbial AA profile, 49% of infused AA were taken up by the udder half, 42% of which occurred during the first pass. From the milk AA profile, 44% of infused AA were taken up by the udder half, 50% of which occurred during the first pass. There was an 8% increase in yield of milk protein with AA infusion, representing 7% capture, but no effect of the infused profile. Acetate infusion caused a decrease in the yields of milk protein and lactose when AA were infused, but not when AA were absent. Milk fat yields were not affected, although acetate concentrations in plasma entering the infused udder half increased by 123% and mammary uptakes increased by 128%. Mammary uptakes of long-chain fatty acids and β-hydroxybutyrate were not affected by acetate infusion, whereas glucose uptakes tended to increase. It was suggested that excess acetate may have been sequestered in adipose tissue in the udder. Yields of both protein and fat in milk showed a low sensitivity to the concentration of their precursors in circulation. It was concluded that the Km in Michaelis-Menten-type equations describing milk synthesis should be assigned a low value, and that the Vmax is regulated to bring about changes in milk yield and composition.  相似文献   

16.
The relationship of the estrous cycle to milk composition and milk physical properties was assessed on Holstein (n = 10,696), Brown Swiss (n = 20,501), Simmental (n = 17,837), and Alpine Grey (n = 8,595) cows reared in northeastern Italy. The first insemination after calving for each cow was chosen to be the day of estrus and insemination. Test days surrounding the insemination date (from 10 d before to 10 d after the day of the estrus) were selected and categorized in phases relative to estrus as diestrus high-progesterone, proestrus, estrus, metestrus, and diestrus increasing-progesterone phases. Milk components and physical properties were predicted on the basis of Fourier-transform infrared spectra of milk samples and were analyzed using a linear mixed model, which included the random effects of herd, the fixed classification effects of year-month, parity number, breed, estrous cycle phase, day nested within the estrous cycle phase, conception, partial regressions on linear and quadratic effects of days in milk nested within parity number, as well as the interactions between conception outcome with estrous cycle phase and breed with estrous cycle phase. Milk composition, particularly fat, protein, and lactose, showed clear differences among the estrous cycle phases. Fat increased by 0.14% from diestrus high-progesterone to estrous phase, whereas protein concomitantly decreased by 0.03%. Lactose appeared to remain relatively constant over diestrus high-progesterone, rising 1 d before the day of estrus followed by a gradual reduction over the subsequent phases. Specific fatty acids were also affected across the estrous cycle phases: C14:0 and C16:0 decreased (?0.34 and ?0.48%) from proestrus to estrus with a concomitant increase in C18:0 and C18:1 cis-9 (0.40 and 0.73%). More general categories of fatty acids showed a similar behavior; that is, unsaturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, trans fatty acids, and long-chain fatty acids increased, whereas the saturated fatty acids, medium-chain fatty acids, and short-chain fatty acids decreased during the estrous phase. Finally, urea, somatic cell score, freezing point, pH, and homogenization index were also affected indicating variation associated with the hormonal and behavioral changes of cows in standing estrus. Hence, the variation in milk profiles of cows showing estrus should potentially be taken into account for precision dairy farming management.  相似文献   

17.
《Journal of dairy science》2022,105(1):329-346
Alfalfa has a lower fiber digestibility and a greater concentration of degradable protein than grasses. Dairy cows could benefit from an increased digestibility of alfalfa fibers, or from a better match between nitrogen and energy supplies in the rumen. Alfalfa cultivars with improved fiber digestibility represent an opportunity to increase milk production, but no independent studies have tested these cultivars under the agroclimatic conditions of Canada. Moreover, decreasing metabolizable protein (MP) supply could increase N use efficiency while decreasing environmental impact, but it is often associated with a decrease in milk protein yield, possibly caused by a reduced supply of essential AA. This study evaluated the performance of dairy cows fed diets based on a regular or a reduced-lignin alfalfa cultivar and measured the effect of energy levels at low MP supply when digestible His (dHis), Lys (dLys), and Met (dMet) requirements were met. Eight Holstein cows were used in a double 4 × 4 Latin square design, each square representing an alfalfa cultivar. Within each square, 4 diets were tested: the control diet was formulated for an adequate supply of MP and energy (AMP_AE), whereas the 3 other diets were formulated to be deficient in MP (DMP; formulated to meet 90% of the MP requirement) with deficient (94% of requirement: DMP_DE), adequate (99% of requirement: DMP_AE), or excess energy supply (104% of requirement; DMP_EE). Alfalfa cultivars had no significant effect on all measured parameters. As compared with cows receiving AMP_AE, the dry matter intake of cows fed DMP_AE and DMP_EE was not significantly different but decreased for cows fed DMP_DE. The AMP_AE diet provided 103% of MP and 108% of NEL requirements whereas DMP_DE, DMP_AE, and DMP_EE diets provided 84, 87, and 87% of MP and 94, 101, and 107% of NEL requirements, respectively. In contrast to design, feeding DMP_EE resulted in a similar energy supply compared with AMP_AE, although MP supply has been effectively reduced. This resulted in a maintained milk and milk component yields and improved the efficiency of utilization of N, MP, and essential AA. The DMP diets decreased total N excretion, whereas DMP_AE and DMP_EE diets also decreased milk urea-N concentration. Reducing MP supply without negative effects on dairy cow performance is possible when energy, dHis, dLys, and dMet requirements are met. This could reduce N excretion and decrease the environmental impact of milk production.  相似文献   

18.
In addition to lysine and methionine, current ration-balancing programs suggest that branched-chain amino acid (BCAA) supply may also be limiting in dairy cows. The objective of this study was to investigate whether BCAA, leucine, isoleucine, and valine become limiting for milk protein synthesis when methionine and lysine supply were not limiting. Nine multiparous Holstein cows with an average milk production of 53.5 ± 7.1 kg/d were randomly assigned to 7-d continuous jugular infusions of saline (CTL), methionine and lysine (ML; 12 g and 21 g/d, respectively), or ML plus leucine, isoleucine, and valine (ML+BCAA; 35 g, 15 g, and 15 g/d, respectively) in a 3 × 3 Latin square design with 3 infusion periods separated by 7-d noninfusion periods. The basal diet consisted of 40% corn silage, 14% alfalfa hay, and a concentrate mix, and respectively supplied lysine, methionine, isoleucine, leucine, and valine as 6.1, 1.8, 4.7, 8.9, and 5.3% of metabolizable protein. Dry matter intake (23.9 kg/d), milk yield (52.8 kg/d), fat content (2.55%), fat yield (1.33 kg/d), lactose content (4.77%), lactose yield (2.51 kg/d), and milk protein efficiency (0.38) were similar across treatments. Protein yield and protein content were not significantly different between ML (1.52 kg/d and 2.88%, respectively) and ML+BCAA (1.51 kg/d and 2.83%, respectively), but they were significantly greater than that of CTL (1.39 kg/d and 2.71%). Cows that received ML+BCAA had less milk urea nitrogen content (10.9 mg/dL) compared with milk of CTL cows (12.4 mg/dL) and ML cows (11.8 mg/dL). Whereas high-producing cows responded positively to methionine and lysine supplementation, no apparent benefits of BCAA supplementation in milk protein synthesis were found. Infusion of BCAA may have stimulated synthesis of other body proteins, probably muscle proteins, as evidenced by decreased milk urea nitrogen.  相似文献   

19.
Regulation of mammary protein synthesis potentially changes the relationships between AA supply and milk protein output represented in current nutrient requirement models. Glucose and AA regulate muscle protein synthesis via cellular signaling pathways involving mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK). The objective of this study was to investigate the effects of essential AA (EAA) and acetate or glucose on mTOR and AMPK signaling pathways and milk protein synthesis rates. A bovine mammary epithelial cell line, MAC-T, was subjected to different media containing 0 or 3.5 mmol/L EAA concentrations with 0 or 5 mmol/L acetate or 0 or 17.5 mmol/L glucose in 2 separate 2 × 2 factorial studies. In a separate set of experiments, lactogenic bovine mammary tissue slices were subjected to the same treatments except that the low EAA treatment contained a low level of EAA (0.18 mmol/L). Supplementation of EAA enhanced phosphorylation of mTOR (Ser2448) and eukaryotic initiation factor 4E binding protein 1 (4EBP1, Thr37/46), and reduced phosphorylation of eukaryotic elongation factor 2 (eEF2, Thr56) in MAC-T cells. Concentration of ATP and phosphorylation of AMPK increased and decreased, respectively, in the presence of EAA in MAC-T cells. Acetate, EAA, or glucose numerically reduced AMPK phosphorylation by about 16% in mammary tissue slices. Provision of EAA increased phosphorylation of mTOR and 4EBP1, intracellular total EAA concentration, and casein synthesis rates in mammary tissue slices, irrespective of the presence of acetate or glucose in the medium. Phosphorylation of mTOR had a marginally negative association with AMPK phosphorylation, which was positively related to eEF2 phosphorylation. Casein synthesis rates were positively and more strongly linked to mTOR phosphorylation than the negative link between eEF2 phosphorylation and casein synthesis rates. A 100% increase in mTOR phosphorylation was associated with an increase in the casein synthesis rate of 0.74%·h−1, whereas a 100% increase in eEF2 phosphorylation was related to a decline in the casein synthesis rate of 0.33%·h−1. Although AMPK phosphorylation was responsive to cellular energy status and had a negative effect on mTOR-mediated signals in bovine mammary epithelial cells, its effect on milk protein synthesis rates appeared to be marginal compared with the mTOR-mediated regulation of milk protein synthesis by EAA.  相似文献   

20.
To determine effects of an elevated supply of cis9,trans11-18:2 (9/11CLA) or trans10,cis12-18:2 (10/12CLA) on de novo synthesis and desaturation of long-chain fatty acids, four Holstein cows fed high-oleic sunflower (OLE) or high-linoleic safflower oil (LIN) at 2.5% of DM were infused (0.625 g/h) with 9/11CLA or 10/12CLA for 48 h via the abomasum. Treatments were assigned in a 2 x 2 factorial design. The assigned diets were fed for 11 d before each 48-h infusion period. Milk samples were obtained at 12 and 0 h before infusion and at 12-h intervals from 0 to 96 h. Concentrations of trans11-18:1 and 18:2n-6 in arterial plasma phospholipid, triglyceride, and FFA fractions were greater due to feeding LIN compared with OLE. Infused 9/11CLA and 10/12CLA were incorporated into plasma triglycerides and FFA primarily. Exogenous 10/12CLA also was found in plasma phospholipids. Milk yield and DMI were not affected by treatments. Percentages and yields of protein, lactose, and SNF in milk also were not affected by treatments. Milk fat percentage and yield, however, decreased 25% from 0 to 96 h in response to infusion of 10/12CLA compared with 9/11CLA. Yields of trans11-18:1, 9/11CLA and 18:2n-6 in milk fat before infusion were higher when LIN was fed compared with OLE. Infusion of 9/11CLA, regardless of diet, increased 9/11CLA in milk fat by 44%. Although 10/12CLA was not detectable in milk fat before infusion, it averaged 6 mg/g of total fatty acids and 2 g/d after 48 h. At 48 h, recovery in milk of infused 9/11CLA was 16% compared with 8% for 10/12CLA. Yields of saturated 6:0 to 16:0, cis9-18:1, 9/11CLA, and 20:4n-6 were reduced by 10/12CLA infusion. Due to a 40% increase in the concentration of 18:0 by 48 h of 10/12CLA infusion, however, yield of 18:0 was not affected. Ratios of cis9-18:1/18:0, 9/11CLA/trans11-18:1, and 20:4n-6/18:2n-6 in milk fat decreased in response to infusion of 10/12CLA, regardless of diet. At peak concentration of 10/12CLA, reductions in cis9-18:1 and saturated 4:0-16:0 yields accounted for 36% and 53% of the decrease in total fatty acid yield. Results indicated 10/12CLA alters lipid metabolism in the bovine mammary gland by simultaneously reducing de novo synthesis and desaturation. Furthermore, milk triglyceride synthesis may have a stringent requirement for endogenously synthesized oleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号