首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
金属点阵结构材料由于其轻量化、高比强度、能量吸收和多孔性等优势,广泛应用于航空航天、汽车工业等领域。以高强韧FeCrNi中熵合金(medium entropy alloy,MEA)为研究对象,采用选区激光熔化(selective laser melting,SLM)技术制备了具有BCC,BCCZ,FCC,FCCZ四种仿晶格结构的FeCrNi中熵合金点阵结构材料,对其显微组织、力学性能及变形行为进行了系统研究。结果表明,采用SLM技术制备的FeCrNi中熵合金点阵结构节点搭接质量高,熔池交错堆叠致密,晶粒均匀细小。在相对密度相近时,BCC,FCC,BCCZ,FCCZ点阵结构的比强度和比能量吸收值依次升高。具有FCCZ点阵结构的FeCrNi中熵合金材料的比能量吸收值达到49.8 J·g-1,显著高于Ti6Al4V及316L不锈钢点阵材料。有限元模拟分析表明,Z型支柱的存在增加了点阵材料的表观强度和刚度,并导致变形行为由结点弯曲主导向拉轴向压缩主导转变,是FCCZ点阵结构强度提升的主要原因。  相似文献   

2.
通过理论、有限元和试验方法研究了悬臂边界条件下BCCZ(体心立方点阵边界添加Z向杆件增强构型)点阵夹芯梁结构的振动行为。基于哈密顿原理和“改进折线”法,获得其振动频率理论模型。并使用SLM(选择性激光熔融)技术和钛合金TC4材料制备了BCCZ点阵夹芯梁试件,进行了模态试验,有限元和试验验证了理论模型的准确性。然后研究了胞元直径、面板厚度和芯子高度等结构几何参数和材料性能对BCCZ点阵结构振动性能的影响规律。结果表明:减小胞元直径,减小面板厚度,提高芯子高度均可以提高BCCZ点阵夹芯梁结构的一阶固有频率参数(一阶固有频率与同质量同面板面积的实体结构之比),胞元直径的影响最明显。面板-芯子-面板材料组合为钛-铝-钛时一阶固有频率最高。研究结果对BCCZ点阵夹芯结构的设计及工程应用具有一定的指导意义。  相似文献   

3.
为进一步提高点阵夹层结构的抗爆性能,提出了面板上薄下厚,芯层上细下粗(正向梯度化)的功能梯度点阵夹层结构,利用ANSYS/LS-DYNA有限元软件对新结构的抗爆性能进行了数值模拟研究。分别探讨了面板梯度化、芯子梯度化对结构抗爆性能的影响,并对功能梯度点阵夹层结构的各尺寸参数做单因素分析。结果表明,同时考虑面板和芯子的正向梯度化能大幅度提高点阵夹层结构吸能,面板正向梯度化对吸能的贡献比例高于芯子梯度化。此外,由单因素分析可知,上下面板厚度、芯层厚度以及芯杆与下面板之间的夹角对抗爆性能影响很大,芯杆上下截面边长对抗爆性能的影响相对较小。  相似文献   

4.
周志伟  陈美霞 《复合材料学报》2018,35(12):3517-3525
提出了兼具力学和声学性能的夹层吸声复合材料-含空腔点阵增强夹芯结构;为了预测含空腔点阵增强结构芯层的等效弹性模量,建立了包含空腔、点阵增强柱和泡沫基体的三相复合材料的细观力学多层次等效数理模型,结合点阵增强柱和空腔周期性分布的特点建立代表性体积单元,利用Mori-Tanaka方法进行两次单相夹杂等效处理,获取了含空腔点阵增强芯层等效弹性模量的解析解,与试验数据和细观力学有限元法结果对比均吻合较好。采用有限元软件ANSYS建立了含空腔点阵增强夹芯结构的实际模型和等效模型,并将芯层等效模量解析结果作为等效模型芯层的材料参数,计算弯曲变形和固有频率并进行对比分析,弯曲变形位移和中低频固有频率的相对误差不超过2%,满足工程精度要求。进一步利用该等效方法,分别探讨了点阵增强柱和空腔体积比对芯层等效弹性模量的影响规律。结果表明,上述方法能较准确地预测含空腔点阵增强结构芯层的等效弹性模量,且数理模型清晰,公式简单,计算快速。  相似文献   

5.
应用有限元分析方法,对芯杆直径沿点阵夹层结构厚度方向梯度变化的点阵夹层结构平压性能进行了分析,并将计算结果与传统点阵夹层结构进行了对比。结果表明:通过比较极限承载力计算模型和有限元分析结果其最大误差为8.9%,芯体截面梯度变化的点阵夹层结构极限承载力小于传统点阵夹层结构。芯体截面梯度变化的点阵夹层结构面比吸能和圧溃载荷率要优于传统点阵夹层结构,且当梯度化系数为0.05时,芯体截面梯度变化的点阵夹层结构面比吸能和圧溃载荷率达到最大值。  相似文献   

6.
针对四面内凹金字塔型负泊松比点阵夹层结构在有无聚脲涂覆两种情况下的抗冲击力学性能进行了研究。采用增材制造方法制作负泊松比点阵结构,通过长直杆冲击试验得到负泊松比点阵夹层结构在碰撞载荷作用下的变形过程、吸能特性和破坏模式。试验结果表明:涂覆聚脲可使该型负泊松比点阵夹层结构提高17%以上的总吸能,增强结构的整体抗冲击能力,显著降低前面板的内凹变形,有效避免芯层大范围的坍塌破坏。相比于未涂覆聚脲模型,涂覆聚脲的负泊松比点阵夹层结构在受冲后保持完整,芯层仍具有承载能力,表现为塑性弯曲变形。  相似文献   

7.
采用碳纤维和芳纶纤维增强复合材料对波纹夹芯结构的面板进行层间混杂铺层设计,通过真空辅助树脂灌注(VARI)成型工艺制备混杂波纹夹芯结构。在60 J、80 J和100 J三种不同冲击能量下,研究了面板混杂铺层方式对波纹夹芯结构低速冲击性能及冲击后压缩强度的影响,并利用超声C扫和工业CT断层成像两种无损检测技术对波纹夹芯结构的冲击损伤机制进行了分析。结果表明:冲击能量较低时,波纹夹芯结构的吸收能量基本不受面板的混杂铺层方式影响,而凹坑深度随表层碳纤维层数增加而减少。冲击能量较高时,面板为分层式混杂(碳/芳纶纤维单层交替铺层)的波纹夹芯结构的抗冲击性能最好,纤维断裂损伤和层间分层主要发生在试样表层,但损伤面积较大;面板为夹层式混杂(以碳纤维为蒙皮、芳纶纤维为芯材)的波纹夹芯结构具有较高的吸收能量,整个上面板的纤维都发生了断裂破坏,但损伤面积较小。碳/芳纶混杂波纹夹芯结构的面板采用分层式和夹层式的混杂铺层设计时,具有较高的冲击后压缩强度。  相似文献   

8.
提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。   相似文献   

9.
基于用高温节点下压法成形的TC4钛合金芯体,用面芯激光焊接制备了钛合金金字塔点阵结构。用响应曲面法优化激光焊接参数,实现了点阵结构面芯连接,分析焊接节点的微观组织并进行了点阵结构平压实验。结果表明:激光功率对焊接效果有显著的影响。点阵结构面芯激光焊接的优化工艺参数为:上面板的焊接功率为1.4 kW,下面板的焊接功率为1.2 kW,离焦量为30 mm,停留时间为1 s。在激光焊接热影响区发生了马氏体转变,分布着大量的针状马氏体;熔焊区的组织为粗大β相+针状α相。在焊接节点处,从熔焊区到母材的显微硬度随着马氏体相的减少而降低。根据平压实验结果分析了金字塔点阵结构变形和破坏的规律,桁架杆失效断裂发生在热影响区。用激光焊接制备的TC4钛合金点阵结构,其平压强度为3.09 MPa,平压模量为153.25 MPa。  相似文献   

10.
金属点阵多孔材料是一种具有复杂周期性结构的先进轻质多功能材料,由于其优异的比强度、吸声、降噪以及超材料等特性,近年来备受关注.而传统的制备工艺仅可以制造类点阵结构,难以生产复杂、精细的点阵结构,成为金属点阵多孔材料进一步应用的掣肘.近年来快速发展的增材制造(Additive manufacturing,AM)技术具有设计与制造自由度大、快速制造任意复杂几何形状零件的特点,可对金属点阵多孔材料进行微观、界观和宏观尺度晶格的多种组合进行调控,是金属点阵多孔材料制备技术的前沿.然而,增材制造金属点阵多孔材料存在残余应力大、表面粗糙度高以及局部应力集中等问题,导致其压缩脆性以及疲劳强度较低.因此,除了研究增材制造工艺参数对点阵结构性能的影响外,研究者们主要从拓扑优化以及后处理方面不断进行尝试,并获得了丰硕的成果.结合拓扑优化设计,可使得应力分布更均匀,更好地服役于不同的加载环境;梯度点阵结构的压缩强度以及能量吸收是均匀点阵结构的两倍以上;通过热处理以及化学蚀刻可以降低点阵结构的残余应力和表面粗糙度,大幅提高其点阵结构的疲劳强度.通过控制单胞结构的分级孔隙度分布、合适的后处理,有望同时实现高孔隙率、高疲劳强度和高能量吸收.本文首先陈述了增材制造金属点阵多孔材料的优势和成形准则,随后介绍了单胞形状、单胞尺寸、支柱直径、体积孔隙率等因素对点阵结构尺寸精度和表面粗糙度的影响,并归纳了这些因素对点阵结构的屈服强度、能量吸收率和疲劳强度等性能的影响.此外,总结了点阵结构的拓扑优化和后处理对其性能的影响,最后介绍了增材制造金属点阵结构存在的掣肘,并展望了其未来的研究趋势.  相似文献   

11.
Inspired by the crystal lattice characteristics of hexagonal-close-packed and body-centered-cubic metals, a novel hexagonal-body-centered (HBC) lattice structure is constructed for energy absorption. HBC lattice structures with three different c/a ratios are prepared by selective laser melting (SLM) using 316 L stainless steel powder. The geometric features and energy absorption performance of the fabricated HBC lattice structures with different c/a ratios are studied by scanning electron microscopy and quasistatic compression tests, respectively. The results show that the HBC lattice structure prepared by SLM not only exhibits good formability, but also demonstrates excellent mechanical properties and energy absorption capacity. The c/a ratio significantly affects the mechanical properties and energy absorption performance of HBC lattice structures. The Young's modulus, yield strength, and energy absorption increase as the c/a ratio decreases. Compared with other lattice structures, the HBC lattice structure exhibits better energy absorption at the same relative density, thus indicating the usefulness of the HBC lattice structure as a lightweight energy-absorbing structure.  相似文献   

12.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

13.
提出了一种齿板-玻璃纤维混合面板和泡沫芯材组成的新型混合夹层结构,齿板通过齿钉与泡沫芯材相连。该结构采用真空导入成型工艺制备,通过三点弯曲试验研究该结构在不同跨度以及不同芯材密度情况下的破坏模式和弯曲性能,并与普通泡沫夹层结构进行对比分析,同时探究了齿板对该结构界面性能的影响。结果表明:在泡沫芯材密度为35kg/m~3、80kg/m~3和150kg/m~3情况下,齿板-玻璃纤维混合泡沫夹层梁弯曲承载能力与普通泡沫夹层梁相比分别提高了168%、211%和258%,其界面剪切强度依次为0.09 MPa、0.21 MPa和0.45 MPa;随着芯材密度和跨度的变化,该结构主要产生芯材剪切和芯材凹陷两种破坏形态,齿板的嵌入有效抑制界面的剪切失效。另外,利用理论公式估算了试件受弯极限承载能力,理论值与实测值吻合较好。  相似文献   

14.
对不同工艺参数下激光选区熔化(Selective Laser Melting, SLM)成形316L不锈钢微观组织结构进行表征,研究不同工艺参数下SLM成形316L不锈钢微观组织结构演化规律、单熔化道凝固特性。结果表明,SLM成形316L不锈钢具有跨尺度、非均质凝固组织特征,包括微米尺度柱状晶粒、小角晶界、熔池界面和纳米尺度亚结构。单熔化道的稳定成形是三维块体成形的基础,熔化道稳定性由激光工艺参数与金属粉体物理特性共同决定。不同的激光工艺参数显著影响SLM成形316L不锈钢微观组织结构,通过改变激光参数可实现微观组织结构的调控,在不同的激光逐层旋转角度下,SLM成形316L不锈钢晶粒尺寸随着扫描间距的增大而增大。强制定向热流使得外延生长机制主导凝固晶粒的生长,在不同的激光工艺参数下,沿增材方向的柱状晶粒形貌普遍存在。  相似文献   

15.
为揭示点阵材料在航空航天工程中的应用潜力,对承受面内压缩载荷点阵夹芯板的力学行为进行了研究。基于夹芯板整体欧拉失稳、剪切失稳、格间局部失稳、跨格局部失稳和应力破坏多种理论失效模式,引入面板厚度、厚度方向的点阵层数、点阵杆件长度、截面尺寸、倾斜度、胞元长细比等优化变量,推导了点阵夹芯板的最小质量优化设计方法。同时利用激光选取熔融(SLM)增材制造工艺生产了点阵夹芯板试验件。随后,采用有限元方法对试验结果进行了仿真分析,两者误差在10%以内,证实了数值方法的准确性。最终对初始设计和优化设计方案进行了数值分析,发现优化方案在保持相同承载力的条件下,实现结构减重16.6%,验证了优化设计方法的有效性。同时,试验与仿真的一致性有力地证明了增材制造工艺在点阵夹芯结构制造方面的可行性。   相似文献   

16.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   

17.
The impact responses and ballistic resistance of sandwich plates having three different types of hybrid cores are investigated. The hybrid cores include metallic pyramidal lattice trusses, metallic pyramidal lattice trusses with ceramic prism insertions, and metallic pyramidal lattice trusses with ceramic prism insertions and void-filling epoxy resin. Three-dimensional (3D) finite element (FE) simulations are carried out for each sandwich type impacted by a hemispherical projectile. Upon validating the FE simulation results with experimental measurements, the ballistic limit velocity, energy absorption and failure mechanisms for each type of the sandwich as well as the influence of key material, structural and topological parameters are investigated systematically. Sandwich plates having metallic pyramidal lattice core with ceramic insertions and epoxy resin filling void spaces are found to outperform the other two sandwich types. It is also demonstrated that the back face-sheet plays a more significant role than the front face-sheet in resisting ballistic impacts.  相似文献   

18.
纸瓦楞夹层板的压缩变形与塑性吸能特性研究   总被引:1,自引:0,他引:1  
付云岗  郭彦峰  王忠民  李媛 《包装工程》2016,37(3):89-94,107
目的研究在不同压缩速率下纸瓦楞夹层板的压缩变形与塑性吸能特性。方法利用Hoff夹层板、正交各向异性弹性薄板理论和工程梁理论,研究瓦楞夹层板的横向压缩位移,分析瓦楞芯层的压缩变形模式及塑性吸能特性,提出芯层结构的压溃强度模型,并通过静态压缩实验进行对比分析。结果B型、C型纸瓦楞夹层板的压溃强度理论预测值分别为0.1195,0.0612 MPa,在1,12,18,48 mm/min的压缩速率下,B型纸瓦楞夹层板的压溃强度分别为0.1011,0.1071,0.1048,0.1075 MPa,C型纸瓦楞夹层板的压溃强度分别为0.0462,0.0640,0.0475,0.0451 MPa。结论低应变率(低压缩率)条件下,纸瓦楞夹层板的横向压缩性能影响基本不变,弹性强度、屈服强度、压溃强度等基本相同。对于相同的材质,几何参数对纸瓦楞夹层板的压缩性能和塑性吸能影响较大。  相似文献   

19.
目的 为了获取具有高抗拉强度与高伸长率的24CrNiMoY合金钢,用选区激光沉积(SLM)方法进行打印。方法 以24CrNiMoY合金钢粉末为材料,当搭接宽度为0.09 mm、扫描角度为67°、扫描线长度为10 mm、扫描速度为1 000 mm/s时,在能量密度分别为102、116、129、142 J/mm3条件下打印合金钢样品,采用金相、X射线衍射、扫描电镜、透射电镜及拉伸试验等分析手段,对制备样品的微观组织和力学性能进行研究。结果 在所采用的能量密度范围内,SLM制备24CrNiMoY合金钢的显微组织主要是板条马氏体组织,随着能量密度的增加,样品内部的气孔缺陷先减少后增加,硬度和拉伸性能以及冲击韧性呈现先升高后降低的趋势。在能量密度为116 J/mm3时,打印合金钢样品具有最优的综合力学性能,致密度为99.53%,硬度为(388±5.9)HV0.2,抗拉强度为(1 210±11) MPa,屈服强度为(1 124±10) MPa,断后伸长率为(6.2±0.4)%,冲击韧性为80 J/cm2。结论 在SLM打印24CrNIMoY合金钢样品中,较高的致密度及精细的板条马氏体是合金钢样品具有良好力学性能的关键要素,该研究可为SLM打印高抗拉强度与高伸长率的24CrNiMoY合金钢制动盘零件提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号