共查询到19条相似文献,搜索用时 62 毫秒
1.
通过10片普通钢筋混凝土(RC)梁及4片部分预应力混凝土(PPC)梁采用CFRP板抗剪加固的试验研究和非线性有限元分析,研究不同损伤程度、剪跨比、配箍率及预应力水平等因素对CFRP板加固RC&PPC梁抗剪性能的影响。结果表明:采用CFRP板对RC&PPC梁进行抗剪加固能够有效抑制斜裂缝的开展,提高加固梁斜截面抗剪承载能力,并改善梁的延性;RC梁损伤后加固,随着配箍率的增大以及剪跨比的减小,将提高加固RC梁的斜向开裂荷载、箍筋屈服荷载以及抗剪极限承载能力;随着预应力水平的提高,PPC加固梁的极限承载力增大,CFRP板抗剪加固效果比较显著;非线性有限元模型能够预测CFRP加固RC/PPC梁的抗剪性能,有限元计算结果与试验结果吻合良好;在进行CFRP板抗剪加固设计时,应对CFRP板的强度进行有效折减。 相似文献
2.
3.
4.
为研究高延性混凝土(HDC)加固钢筋混凝土梁的受剪性能,该文对7根HDC加固梁及4根未加固梁进行静力试验,研究剪跨比、配箍率、加固层厚度和加固层附加箍筋对钢筋混凝土梁破坏形态、荷载-挠度曲线、受剪承载力以及裂缝的影响。结果表明:采用HDC面层对钢筋混凝土梁进行受剪加固,可以显著提高梁的受剪承载力;HDC面层可以代替部分箍筋的受剪作用,改善钢筋混凝土梁的剪切破坏形态;加固试件在达到极限位移之后,试件的完整性较好,剩余承载力较高。基于试验结果,利用桁架-拱模型,提出了HDC加固钢筋混凝土梁的受剪承载力计算公式,计算值与试验值吻合较好。 相似文献
5.
6.
为探究外贴碳纤维增强复合材料(CFRP)加固钢筋混凝土(RC)剪力墙的抗剪性能及作用机制,基于Hashin损伤准则建立了可以考虑CFRP-混凝土界面剥离的三维数值模型。研究了剪跨比、CFRP配纤率及加固方式对CFRP加固RC剪力墙抗剪性能的影响。研究结果表明:(1) 外贴CFRP加固后有效缓解了剪切主裂缝的发展;(2) 随着剪跨比的增大,CFRP加固剪力墙中CFRP条带所提供的抗剪贡献显著降低;(3) CFRP抗剪贡献并不是随着加固层数的增大而线性增长。基于模拟分析结果,从定性结论扩展至量化分析,提出了剪跨比及加固层数影响系数,并基于美国规范(ACI 440.2R-17)公式形式,进一步建立了表征CFRP抗剪贡献的计算公式。通过与试验数据的对比,发现该建议公式可以更准确的描述剪跨比、CFRP配纤率及加固方式对CFRP抗剪贡献的影响规律,建议公式预测结果与试验结果的平均绝对误差为8%,验证了建议计算方法的有效性。 相似文献
7.
现有的钢筋混凝土(RC)柱抗剪承载力计算模型大多属于确定性模型,难以有效考虑几何尺寸、材料特性和外荷载等因素存在的不确定性,导致计算结果的离散性较大,且计算精度和适用性有限。鉴于此,该文结合变角桁架-拱模型和贝叶斯理论,研究建立了剪切型RC柱抗剪承载力计算的概率模型。首先基于变角桁架-拱模型理论,并考虑轴压力对临界斜裂缝倾角的影响,建立了剪切型RC柱抗剪承载力的确定性修正模型;然后考虑主观不确定性和客观不确定性因素的影响,结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,建立了剪切型RC柱的概率抗剪承载力计算模型;最后通过与试验数据和现有模型的对比分析,验证了该模型的有效性和实用性。分析结果表明,该模型不仅可以合理描述剪切型RC柱抗剪承载力的概率分布特性,而且可以校准现有确定性计算模型的置信水平,并且可以确定不同置信水平下剪切型RC柱抗剪承载力的特征值。 相似文献
8.
为更加深入研究型钢混凝土叠合梁的受剪机理,提出更为优化的截面形式,该文完成了10个足尺型钢混凝土叠合梁在单调集中荷载作用下的静力试验研究。通过考察剪跨比、截面形式(空腹和实腹)等参数对受剪性能的影响,着重研究了足尺型钢混凝土空腹叠合梁的受剪性能。结合试验结果对各试件的裂缝形态、破坏特征、承载能力、变形等性能进行了分析研究。采用桁架-拱模型并基于变形协调条件将桁架、拱和型钢三者对受剪承载力的作用相结合,建立了适用于型钢混凝土叠合梁的受剪承载力计算方法。结果表明:型钢混凝土空腹叠合梁与实腹叠合梁具有相似的受剪性能和破坏形态,承载力随剪跨比的增大而减小,试件整体性良好;采用JGJ 2016和YB 9082-2006计算的受剪承载力离散型偏大,该文建立的修正桁架-拱模型计算值与试验结果吻合较好。 相似文献
9.
10.
为避免矩形截面框架柱在斜向水平地震作用下发生脆性破坏,通过试验研究14根框架柱在斜向水平荷载作用下的受力性能和破坏机理。以桁架-拱模型为基础建立计算矩形截面框架柱斜向受剪承载力的空间桁架-拱模型,该模型主要考虑了框架柱截面面积、混凝土和箍筋材料强度、配箍率、轴压力以及混凝土强度折减系数对其斜向受剪承载力的影响。最后,利用该文以及其他试验共计30根矩形截面框架柱的斜向受剪承载力试验结果对此空间桁架-拱模型的可行性和适用性进行了验证,试验结果与计算值的对比表明利用该模型可以安全计算矩形截面框架柱斜向受剪承载力。 相似文献
11.
碳纤维布加固钢筋混凝土(RC)梁中,碳纤维布与梁底混凝土的剥离破坏使碳纤维布的强度不能得到充分发挥.分析碳纤维布与梁底混凝土的粘结应力,是研究碳纤维布加固剥离破坏承载力的基础问题.根据4根碳纤维布加固RC梁的试验研究结果,采用商业有限元程序MSC.Marc建立有限元模型,进行了非线性计算分析.通过分离总粘结应力中的局部粘结应力,得到粘结延伸长度范围内的锚固粘结应力分布,并结合试验数据对其分布规律进行了研究.根据分析和试验结果,引入了“有效锚固粘结长度”和“锚固粘结应力”的概念,给出了极限荷载下锚固粘结应力的计算建议. 相似文献
12.
Hiroshi Yoshihara 《Engineering Fracture Mechanics》2008,75(16):4727-4739
Using a single-edge-notched specimen of spruce, an asymmetric four-point bending test was conducted to obtain the mode II fracture toughness GIIc and critical stress intensity factor KIIc, and the test method was numerically and experimentally analyzed. A three-point bend end-notched flexure test was also conducted and the results were compared with those of the asymmetric four-point bending tests. The crack length had a small influence on the load/loading-line displacement relationship in the asymmetric four-point bending test, so it was difficult to determine the value of GIIc, which requires the measurement of loading-line displacement. In contrast, the value of KIIc obtained by two tests was similar when the initial crack length ranged from 0.7 to 0.85 times the depth of the specimen. These results show that the asymmetric four-point bending test is a promising means of determining KIIc. 相似文献
13.
进行了钢管混凝土多排多列内栓钉(群钉)试件的推出试验,其中6个带栓钉,1个不带栓钉,试件参数为栓钉环向布置间距、纵向布置间距和排数。采用ABAQUS软件建立了三维有限元模型,对试验结果进行了计算分析,计算结果与试验结果吻合较好。试验与分析结果表明:钢管混凝土群钉推出试件受力全过程由弹性段、弹塑性段、下降段和荷载残余段组成;沿加载方向,紧邻栓钉背部的混凝土应力为50.1 MPa~68.8 MPa,超过混凝土圆柱体抗压强度(ƒc'=50.1 MPa),混凝土发生较大塑性变形;栓钉根部Mises应力最大,最先达到材料的极限强度,并发生剪断破坏;单根栓钉平均抗剪承载力随着群钉环向和纵向间距的减小以及排数的增加而降低,提出了这三个因素对单根栓钉平均抗剪承载力的折减系数计算公式。为充分利用栓钉抗剪性能,避免混凝土先于栓钉破坏,建议设计中栓钉环向和纵向间距应分别不小于3.4倍和4.4倍栓钉直径。分析表明,环向间距、纵向间距和排数三个因素对栓钉抗剪承载力的影响彼此独立,它们对群钉抗剪承载力的影响可采用三个折减系数相乘的计算方法。 相似文献
14.
进行了6根碳纤维布加固已承受荷载的钢筋混凝土梁和2根对比混凝土梁的抗弯性能试验研究,分析了碳纤维布加固已承受荷载的钢筋混凝土梁的破坏机理,研究了荷载历史对加固梁极限荷载的影响.试验结果表明,粘贴碳纤维布可以有效地提高加固梁的抗弯承载能力.无论荷载历史如何,只要梁承受的初始荷载相同,梁破坏时的极限荷载基本相同.梁端锚固对加固梁的极限荷载影响不明显.根据不同的破坏模式,提出了碳纤维布加固已承受荷载的钢筋混凝土梁的承载力计算方法,给出了工程实用计算公式. 相似文献
15.
The flexural analysis of fiber-reinforced composite beams based on a higher-order shear deformation theory is studied. The geometric non-linearity is incorporated in the formulation by considering the von Karman strains. The finite element method is used to solve the non-linear governing equations by direct iteration. Unlike conventional beam models, the present beam model accounts for y direction strains. It is observed that the solution obtained from the two approaches differ slightly in the case of cross-ply laminates, but there exists a considerable difference in the case of angle-ply laminates. The influence of boundary conditions, beam geometries, and ply orientations on the deflections and stresses of laminated beams is shown both in tabular and graphical form. 相似文献
16.
17.
18.
进行了4 个多室式钢管混凝土T形试件和2 个多室式空钢管T形对比试件的纯弯试验,着重研究前者在纯弯状态下的变形过程及破坏形态,同时考察了截面尺寸、加载位置等参数对其纯弯力学性能的影响.试验结果表明:增大截面腹板高度能显著提高多室式钢管混凝土T形试件的抗弯承载力;力分别作用在翼缘或腹板时其承载能力有一定的差异;试件的破坏形态以整体弯曲为主.采用有限元方法对多室式钢管混凝土T 形试件的弯矩-挠度曲线进行了全过程分析,与试验结果吻合较好.最后在参数分析的基础上提出了多室式钢管混凝土T形构件抗弯承载力的实用计算方法. 相似文献
19.
M. Kojic S. Mijailovic N. Zdravkovic 《International journal for numerical methods in engineering》1998,43(5):941-953
We present a numerical algorithm for the determination of muscle response by the finite element method. Hill's three-element model is used as a basis for our analysis. The model consists of one linear elastic element, coupled in parallel with one non-linear elastic element, and one non-linear contractile element connected in series. An activation function is defined for the model in order to describe a time-dependent character of the contractile element with respect to stimulation. Complex mechanical response of muscle, accounting for non-linear force–displacement relation and change of geometrical shape, is possible by the finite element method. In an incremental-iterative scheme of calculation of equilibrium configurations of a muscle, the key step is determination of stresses corresponding to a strain increment. We present here the stress calculation for Hill's model which is reduced to the solution of one non-linear equation with respect to the stretch increment of the serial elastic element. The muscle fibers can be arbitrarily oriented in space and we give a corresponding computational procedure of calculation of nodal forces and stiffness of finite elements. The proposed computational scheme is built in our FE package PAK, so that real muscles of complex three-dimensional shapes can be modelled. In numerical examples we illustrate the main characteristic of the developed numerical model and the possibilities of solution of real problems in muscle functioning. © 1998 John Wiley & Sons, Ltd. 相似文献