首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of our study was to conduct a selection of the monocultures capable of providing the most attractive sensory features of the final product. Four fermented goat's milk beverages were produced with probiotic monocultures containing Lactobacillus (Lb. acidophilus La‐5, Lb. rhamnosus K3 and Lb. plantarum O20) and Bifidobacterium (Bif. animalis subsp. lactisBB‐12). A sensory analysis and microbiological assessment of fermented goat's milk beverages were made at the beginning of the study and after 3, 7, 10 and 14 days of refrigerated storage (5 ± 1 °C). We found that samples including monocultures Lb. plantarum O20 and Bif. animalis subsp. lactisBB‐12 were differentiated from other goat's milk beverages.  相似文献   

2.
Goat milk is a good carrier for probiotic bacteria; however, it is difficult to produce fermented goat milk with a consistency comparable to that of fermented cow milks. It can be improved by the addition of functional stabilizers, such as inulin, or treatment with transglutaminase. The aim of this study was to determine the effect of cold storage of inulin and microbial transglutaminase on the viability of Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis Bb-12 in fermented goat milk. Microbiological analysis included the determination of the probiotic bacteria cell count in fermented milk samples, whereas physico-chemical analysis included the analysis of fat content, titratable acidity, and pH of raw, pasteurized, and fermented goat milk samples. No positive influence of inulin or microbial transglutaminase on the viability of probiotics in fermented goat's milk samples was observed. Nevertheless, the population of probiotics remained above 6 log cfu/g after 8 wk of storage at 5°C.  相似文献   

3.
The aim of the study was to use 3 monocultures of Bifidobacterium (Bifidobacterium animalis ssp. lactis AD600, Bifidobacterium animalis ssp. lactis BB-12, and Bifidobacterium longum AD50) in fermented goat milk to assess the microbial, physicochemical, rheological, and sensory quality of beverages during a 3-wk storage period at 5°C. The results indicated that selected bifidobacteria may be used for production of fermented goat milk because they comply with the minimum standards specified by the Food and Agriculture Organization of the United Nations and the World Health Organization during the entire period of storage. However, goat milk fermented by Bif. longum AD50 had less than 106 cfu/g after 21 d of storage. The acidity, acetaldehyde content, viscosity, and hardness of fermented goat milk beverages depended on the strain and the storage period. Sensory properties were similar and acceptable, with a tendency for the quality to be reduced with an extended storage time. Depending on the monoculture of bifidobacteria used to manufacture fermented goat milk, the product had a different pH value. Titratable acidity in all fermented goat milk increased significantly along with the time of storage. Our study has shown that monocultures of bifidobacteria had a significant effect on the content of acetaldehyde, but the lowest effect over the entire storage period was observed in goat milk fermented by Bif. animalis ssp. lactis BB-12. This sample also had the lowest viscosity values compared with other samples and the best organoleptic properties during a 3-wk storage period.  相似文献   

4.
The carbonation of pasteurised milk was evaluated as a method for improving bacterial viability in fermented milk added with probiotic bacteria (Lactobacillus acidophilus and/or Bifidobacterium bifidum). The behaviour of microorganisms during fermentation and cold storage, and the biochemical and sensory properties of the products were assessed. In AT (Streptococcus thermophilus/L. acidophilus) and ABT (S. thermophilus/L. acidophilus/B. bifidum) products, the fermentation times to decrease the pH to 5 were significantly lowered when CO2 or lactic acid was added to milk. The higher acidity levels of carbonated (as a result of production of carbonic acid) and lactic acidified samples enhanced growth and metabolic activity of the starter during fermentation and was the reason for this reduction in incubation time. Cell counts of S. thermophilus, L. acidophilus and B. bifidum gradually decreased through the cold storage of carbonated and non-acidified fermented milk, although the counts were always higher than 106 viable cells g−1. The CO2 did not exert any influence on the viability of S. thermophilus and L. acidophilus in AT fermented milk stored at 4°C but the presence of B. bifidum and CO2 in ABT-type products was associated with lower viability of L. acidophilus during the refrigerated storage. The higher acetate concentrations of ABT products made with non-acidified milk as compared with the carbonated products could have contributed to major survival of L. acidophilus in the former. The use of milk acidified with CO2 had no detrimental effects on the sensory properties of ABT fermented milk. Therefore, we concluded that the carbonation of pasteurised milk prior to the starter addition could be satisfactorily used to reduce the manufacture time of fermented milk.  相似文献   

5.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

6.
The effects of açai pulp addition and different probiotic bacteria on the fatty acid profile of stirred yoghurt were examined. Skim milk was divided into two groups: one containing açai pulp and another without the fruit. Batches were inoculated with yoghurt starter culture and divided into five groups according to probiotic addition. Counts of viable microorganisms were measured at days 1, 14 and 28 of cold storage. Fatty acid profile was determined by gas chromatography at day 1. Açai pulp favoured an increase in Lactobacillus acidophilus L10, Bifidobacterium animalis ssp. lactis Bl04 and Bifidobacterium longum Bl05 counts at the end of 4 weeks of cold storage. This study demonstrated that açai pulp addition increased monounsaturated and polyunsaturated fatty acid contents in probiotic yoghurt and enhanced the production of α-linolenic and conjugated linoleic acids during fermentation of skim milk prepared with B. animalis ssp. lactis Bl04 and B94 strains.  相似文献   

7.
Common starter cultures used in fermented mutton sausages were substituted by probiotic strains of Lactobacillus acidophilus CCDM 476 and Bifidobacterium animalis 241a. Technological properties of the traditional and the probiotic sausages were compared. The potential probiotic effect was evaluated by enumeration of bifidobacteria and lactobacilli in stool samples of 15 volunteers before and after a 14-day consumption period. The numbers of lactobacilli (107 cfu/g) and bifidobacteria (103 cfu/g) in the final product did not affect the technological properties. The use of L. acidophilus as a starter culture was found more beneficial than the use of B. animalis. Even after 60 days of storage, high counts of L. acidophilus (106 cfu/g) were detected; on the other hand, the counts of B. animalis were under the detection limit. Regarding sensory properties, the probiotic products showed better texture, and, curiously, a reduction of the typical smell of mutton. The numbers of lactobacilli in stool samples increased significantly after the consumption of the probiotic sausages.  相似文献   

8.
The influence of the addition of raffinose family oligosaccharides (RFOs) extracted from lupin seeds on the survival of Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 in fermented milk during 21 days of storage in refrigerated conditions was studied. For this purpose, viability and metabolic activity (expressed as pH, lactic and acetic acid production and utilization of soluble carbohydrates) of probiotic bacteria were determined. Retention of viability of B. lactis Bb-12 and L. acidophilus La-5 was greater in fermented milk with RFOs. The pH of probiotic fermented milk at 21 days of storage was lower (4.27) compared with probiotic fermented milk with RFOs (4.37). The highest levels of lactic and acetic acid were produced in probiotic fermented milk without RFOs compared with probiotic fermented milk with RFOs during storage at 4 °C. Soluble carbohydrates were utilised in fermented milk with and without RFOs, respectively, for maintaining B. lactis Bb-12 and L. acidophilus populations during refrigerated storage. In conclusion, all these experiments provide convincing evidence that RFOs have beneficial effects on the survival of these probiotic cultures in dairy products. As a result, such stored dairy products containing both probiotics and prebiotics have synergistic actions in the promotion of health.  相似文献   

9.
The use of cheese whey and probiotic cultures in the production of dairy beverages has been highly attractive; nonetheless, whey-based goat beverages tend to be poor and watery when compared to fermented milks. The addition of fruits and fibre ingredients might improve texture and mouthfeel of this kind of product. Fermented whey-based goat beverages prepared using Streptococcus thermophilus TA-40 as starter culture, with added guava or soursop pulps, and with or without addition of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds (PHGM), showed to be good vehicles for Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus Lr-32, maintaining their viability above 7 log CFU/ml during 21 days. PHGM increased the dietary fibre content and enhanced the instrumental texture and sensory features of both guava and soursop dairy beverages, especially texture, appearance, and overall acceptability. The PHGM might be recommended to improve nutritional and sensory quality of fermented probiotic beverages produced with goat milk and cheese whey.  相似文献   

10.

ABSTRACT

We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.

PRACTICAL APPLICATIONS

Probiotic cultures should grow quickly in milk, provide adequate sensory and rheological properties to the product, and remain viable during storage. Commercially, it is very common to use yogurt starter culture (i.e. Streptococcus thermophilus[ST] and Lactobacillus delbrueckii ssp. bulgaricus) in combination with the probiotic bacteria in order to reduce fermentation time. However, LB tends to post acidify fermented milk, which reduces the viability of the probiotic bacteria; thus, it is recommended to use starter cultures devoid of this species. We found that the technological properties and the viability of the probiotic bacterium Bifidobacterium animalis ssp. lactis BL O4 in coculture with ST make it suitable for probiotic fermented milk production; it produces rheological characteristics similar to those of yogurt.  相似文献   

11.
The effects of inulin degree of polymerization (DP) on the viabilities of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 and on some parameters of fermented milk, such as microbiological, rheological, biochemical, and sensory properties, were investigated during 30 d of storage. Samples were produced using L. acidophilus La-5 and B. animalis Bb-12, along with inulin having different DP as prebiotic, and the effects of high-DP (DP ≥ 23) and low-DP (DP ≤ 10) inulin on fermented milk, were determined. The viability of both strains increased when they were used with inulin having any DP. The addition of inulin increased the consistency index of all samples. During storage, we observed an increase in lactic and acetic acid contents of samples in which high-DP inulin was used, for both strains of bacteria. Of the combinations we tested, the sample produced with L. acidophilus La-5 and high-DP inulin demonstrated the highest rheological and sensory performance as well as the best viability of probiotics.  相似文献   

12.
The objective of this study was to monitor the viability during storage of Lactobacillus acidophilus LA-5 (A), Bifidobacterium animalis ssp. lactis BB-12 (B), and Streptococcus thermophilus CHCC 742/2130 (T) in probiotic cultured dairy foods made from pasteurized camel, cow, goat, and sheep milks fermented by an ABT-type culture. The products manufactured were stored at 4°C for 42 d. Microbiological analyses were performed at weekly intervals. Streptococcus thermophilus CHCC 742/2130 was the most numerous culture component in all 4 products both at the beginning and at the end of storage. The viable counts of streptococci showed no significant decline in fermented camel milk throughout the entire storage period. The initial numbers of Lb. acidophilus LA-5 were over 2 orders of magnitude lower than those of Strep. thermophilus CHCC 742/2130. With the progress of time, a slow and constant decrease was observed in lactobacilli counts; however, the final viability percentages of this organism did not differ significantly in the probiotic fermented milks tested. The cultured dairy foods made from cow, sheep, and goat milks had comparable B. animalis ssp. lactis BB-12 counts on d 0, exceeding by approximately 0.5 log10 cycle those in the camel milk-based product. No significant losses occurred in viability of bifidobacteria in fermented camel, cow, and sheep milks during 6 wk of refrigerated storage. In conclusion, all 4 varieties of milk proved to be suitable raw materials for the manufacture of ABT-type fermented dairy products that were microbiologically safe and beneficial for human consumption. It was suggested that milk from small ruminants be increasingly used to produce probiotic fermented dairy foods. The development of camel milk-based probiotic cultured milks appears to be even more promising because new markets could thus be conquered. It must be emphasized, however, that further microbiological and sensory studies, technology development activities, and market research are needed before such food products can be successfully commercialized.  相似文献   

13.
The viability of 5 probiotic lactobacilli strains (Lactobacillus acidophilus LA-5, Lactobacillus casei L01, Lactobacillus casei LAFTI L26, Lactobacillus paracasei Lcp37, and Lactobacillus rhamnosus HN001) was assessed in 2 types of probiotic flavored drink based on fermented milk during 21 days of refrigerated storage (5°C). Also, changes in biochemical parameters (pH, titrable acidity, and redox potential) during fermentation as well as the sensory attributes of final product were determined. Among the probiotic strains, L. casei LAFTI L26 exhibited the highest retention of viability during refrigerated storage period, while L. acidophilus LA-5 showed the highest loss of viability during this period. The decline in cell count of probiotic bacteria in strawberry fermented milk was significantly greater compared to peach fermented milk. In an overall approach, peach fermented milk containing L. casei LAFTI L26 was selected as the optimal treatment in this study in both aspects of viability and sensory accpeptibility.  相似文献   

14.
Lactobacillus acidophilus LA-5 is a suitable probiotic for food application, but because of its slow growth in milk, an increase in its efficiency is desired. To shorten the time required for fermentation, the nutrient requirements of L. acidophilus LA-5 were analyzed, including the patterns of consumption of amino acids, purines, pyrimidines, vitamins, and metal ions. The nutrients required by L. acidophilus LA-5 were Asn, Asp, Cys, Leu, Met, riboflavin, guanine, uracil, and Mn2+, and when they were added to milk, the fermentation time of fermented milk prepared by L. acidophilus LA-5 alone was shortened by 9 h, with high viable cell counts that were maintained during storage of nutrient-supplemented fermented milk compared with the control. For fermented milk prepared by fermentation with Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, and L. acidophilus LA-5, viable cell counts of L. acidophilus LA-5 increased 1.3-fold and were maintained during storage of nutrient-supplemented fermented milk compared with the control. Adding nutrients had no negative effect on the quality of the fermented milk. The results indicated that suitable nutrients enhanced the growth of L. acidophilus LA-5 and increased its viable cell counts in fermented milk prepared by L. acidophilus LA-5 alone and mixed starter culture, respectively.  相似文献   

15.
K.E. Almeida  M.N. Oliveira 《LWT》2008,41(2):311-316
The acidification rates of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (Bl) in co-culture with Streptococcus thermophilus (St) were studied in Minas frescal cheese whey. Effects of the co-culture composition and the final pH values on the kinetic parameters of acidification, post-acidification and counts of health promoting micro-organisms were also studied. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the shortest fermentation time when compared with the other co-culture combinations. All products showed development of acidity during the storage period and lowest values had been observed employing St-Bl co-culture. The technological interest of using M. frescal cheese whey for the production of a probiotic lactic beverage is discussed in this article.  相似文献   

16.
Gruels tailored to school-age children and made of soy milk and rice flour with or without total dietary fiber from passion fruit by-product were fermented by amylolytic lactic acid bacteria strains (Lactobacillus fermentum Ogi E1 and Lactobacillus plantarum A6), by commercial probiotic bacteria strains (Lactobacillus acidophilus L10, Lactobacillus casei L26 and Bifidobacterium animalis subsp. lactis B94) and by co-cultures made of one amylolytic and one probiotic strain. The influence of ingredient composition and bacterial cultures on kinetics of acidification, α-amylase activity of the bacteria, apparent viscosity and microstructure of the fermented products was investigated. During fermentation of the gruels, α-amylase activity was determined through the Ceralpha method and apparent viscosity, flux behavior and thixotropy were determined in a rotational viscometer. Rheological data were fitted to Power Law model. The combination of amylolytic and probiotic bacteria strains reduced the fermentation time of the gruels as well as increased the α-amylase activity. The addition of passion fruit fiber exerted less influence on the apparent viscosity of the fermented products than the composition of the bacterial cultures. Scanning electron microscopy provided evidence of exopolysaccharide production by amylolytic bacteria strains in the food matrices tested. The co-cultures made of amylolytic and probiotic bacteria strains are suitable to reduce the fermentation time of a soy milk/rice matrix and to obtain a final product with pH and viscosity similar to yoghurt.  相似文献   

17.
Since 2004, our research group has isolated 240 Lactobacillus strains from Koumiss, a traditional fermented alcoholic beverage prepared from mare's milk in Inner Mongolia, Xinjiang of China and Mongolia. Among these Lactobacillus strains a novel strain with potential probiotic properties, Lactobacillus casei Zhang, was screened out and studied extensively for its probiotic properties, health-promoting effects and fermentation characteristics. In vitro tests indicated that L. casei Zhang had high tolerance to simulated gastric, intestine juices and bile salts, similar to commercial probiotic strains such as Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus GG, L. casei Shirota and Bifidobacterium animalis Bb12. Higher acid-production activity and proteolytic activity was observed in the fermented milk inoculated with L. casei Zhang during the refrigerated storage than in the samples inoculated with the selected commercial probiotics. The yogurt samples fermented with L. casei Zhang exhibited similarer viable count (1.0 × 109 cfu/mL) as the other samples after 28 d of refrigerated storage. The results suggested that L. casei Zhang showed good potential for application in functional foods and health-related products.  相似文献   

18.
In this work, we investigated the effect of supplementing fermented milk with quinoa flour as an option to increase probiotic activity during fermented milk production and storage. Fermented milk products were produced with increasing concentrations of quinoa flour (0, 1, 2, or 3 g/100 g) and submitted to the following analyses at 1, 14, and 28 d of refrigerated storage: postacidification, bacterial viability, resistance of probiotics to simulated gastrointestinal (GI) conditions, and adhesion of probiotics to Caco-2 cells in vitro. The kinetics of acidification were measured during the fermentation process. The time to reach maximum acidification rate, time to reach pH 5.0, and time to reach pH 4.6 (end of fermentation) were similar for all treatments. Adding quinoa flour had no effect on fermentation time; however, it did contribute to postacidification of the fermented milk during storage. Quinoa flour did not affect counts of Bifidobacterium animalis ssp. lactis BB-12 or Lactobacillus acidophilus La-5 during storage, it did not protect the probiotic strains during simulated GI transit, and it did not have a positive effect on the adhesion of probiotic bacteria to Caco-2 cells in vitro. Additionally, the adhesion of strains to Caco-2 cells decreased during refrigerated storage of fermented milk. Although the addition of up to 3% quinoa flour had a neutral effect on probiotic activity, its incorporation to fermented milk can be recommended because it is an ingredient with high nutritive value, which may increase the appeal of the product to consumers.  相似文献   

19.
Lactobacillus acidophilus or Bifidobacterium animalis subsp. lactis Bb‐12 and green banana pulp were used in order to obtain potentially probiotic and prebiotic yoghurts, which were compared over a 45‐day storage period. Goat milk yoghurts demonstrated probiotic effects up to 45 days of storage. Cow milk yoghurts produced with B. animalis subsp. lactis Bb‐12 showed a probiotic effect reduction during the storage period (1.74 log CFU/g). The type of milk affected the yoghurts’ chemical and physicochemical properties. Sensory acceptance was also affected, where cow milk yoghurts were better accepted than goat milk ones.  相似文献   

20.
A probiotic whey cheese added with Lactobacillus casei LAFTI®L26, Lactobacillus acidophilus LAFTI®L10 or Bifidobacterium animalis Bo was subject in vitro to sequential conditions that parallel the four major steps of digestion: mouth (artificial saliva), oesophagus-stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum; its manufacture followed the traditional cheesemaking protocol of Portuguese Requeijão. MRS broth was inoculated in parallel as reference medium, to ascertain the protective effect of the whey cheese matrix itself upon those strains in every digestion step. Mouth conditions had an almost negligible effect upon all three strains, whereas oesophagus-stomach, duodenum and ileum conditions decreased the viable numbers of L. casei and L. acidophilus; in both systems, B. animalis suffered only slight decreases in viable numbers; and L. casei and L. acidophilus behaved likewise in MRS exposed to duodenum and ileum conditions. Whey cheese matrices thus appeared to protect the aforementioned three strains during transit throughout the simulated gastrointestinal system, so they are promising carriers of those probiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号