共查询到19条相似文献,搜索用时 46 毫秒
1.
针对传统信号传播路径损耗模型接收的信号强度指示(received signal strength indication, RSSI)测距误差较大, 提出了基于反向传播(back propagation, BP)神经网络模型的RSSI测距方法.首先, 研究分析传统信号传播路径损耗模型及测距误差; 其次, 利用BP神经网络构建新的路径损耗模型, 并将该模型应用到RSSI测距中, 对基于BP神经网络模型的RSSI测距方法进行研究; 最后, 通过实验和MATLAB仿真对测距方法进行验证.仿真结果表明:BP神经网络模型的RSSI测距误差比传统信号传播路径损耗模型的RSSI测距误差要小. 相似文献
2.
基于RSSI的对数距离路径损耗模型研究 总被引:1,自引:0,他引:1
分析基于RSSI的对数距离路径损耗模型,通过对对数距离路径损耗模型进行相应的修正,以提高距离测量模型的准确度。最后对对数距离路径损耗模型及其修正进行了仿真。 相似文献
3.
4.
提出了一种新型的基于遗传算法(GA)优化的误差反向传播(BP)神经网络的寿命预测模型.选取不同公司生产的LED,以LED光源光通量维持率测量方法(LM-80-08)测试报告中的电流、结温、初始光通量和初始色坐标作为神经网络的输入,LED在网络输入的应力条件下的寿命为输出,可以预测LED在任意电流和结温下的寿命.研究结果表明,该GA-BP模型相比于LED光源长期流明维持率的预测方法(TM-21-11)更具灵活性,预测误差较传统BP神经网络降低了65.5%,平均相对误差达到1.47%,优于Adaboost模型的54%和3.16%,训练样本相关系数达到99.4%,GA-BP模型预测LED寿命误差更小,普适性更高,在LED的寿命预测中具有实际意义. 相似文献
5.
神经网络由于其非线性处理能力强,性能稳定等特点得到了广泛应用和研究。主要应用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。神经网络中使用最为广泛的就是前馈神经网络。其网络权值学习算法中影响最大的就是误差反向传播算法(back—propagation简称BP算法)。BP算法存在局部极小点,收敛速度慢等缺点。基于优化理论的Levenberg-Marquardt算法忽略了二阶项。该文讨论当误差不为零或者不为线性函数即二阶项S(W)不能忽略时的Hesse矩阵的近似计算,进而训练网络。 相似文献
6.
基于接收信号强度指示(RSSI)的移动目标定位和跟踪常采用三边或角度测量定位技术。尽管该技术简单,易实施,但由于RSSI值与距离间的非线性关系,它们容易导致较大的定位误差。通用回归神经网络(GRNN)能够快速训练稀疏数据集。提出基于GRNN的移动目标跟踪(GMTT)算法,该算法依据GRNN处理RSSI与目标位置间的非线性关系,利用卡尔曼滤波(KF)修正目标位置。仿真实验结果表明,相比于RSSI+KF,GMTT算法可以有效地降低目标定位的根均方误差。 相似文献
7.
针对利用接收信号强度指示(RSSI)进行节点定位时,RSSI值易受到环境因素的影响导致定位误差。为减小定位误差,在修正加权质心定位算法的基础上,使用卡尔曼滤波对连续采集到的RSSI值进行最优化处理,实现实时状态的预测和估计,使测距结果尽可能接近实际距离,为后续的定位提供更准确的数据。仿真结果显示,相比于之前的算法,改进算法减小了定位误差,提高了定位准确度。 相似文献
8.
9.
刘美玉刘启发程亚玲王瑾 《微电子学与计算机》2022,(12):13-20
光电混合人工智能计算芯片在人工智能应用中通过人工智能算法实现高速和高效的计算,其中光学神经网络(Optical Neural Networks,ONNs)算法在实现大量矩阵运算方面尤为重要.通过使用由马赫曾德尔干涉仪(Mach-Zehnder interferometers,MZI)搭建的快速傅里叶变换(Fast Fourier transform,FFT)型光学神经网络来实现手写数字的高精确度识别.在模型构建方面,利用奇异值分解将神经网络的线性层进行分解,从而实现数据降维,主要特征提取.在对该ONN的训练中,分别采用了带动量的随机梯度下降算法(Stochastic Gradient Descent with momentum,SGD with momentum)和均方根传递(Root Mean Square propagation,RMSprop)算法,分析了在不同训练算法下该ONN对手写数字的识别精度.此外,还深入剖析了两种训练算法背后的数学理论,探究造成两种训练算法实验结果差异的本质原因.最后,通过实验对比,发现RMSprop算法在FFT型光学神经网络上具有较高的识别精确度,达到97.4%;并且采用RMSprop算法的ONN计算速度优于SGD with momentum算法. 相似文献
10.
用于神经网络模式识别的一种改进的BP算法 总被引:4,自引:0,他引:4
在对采用BP算法的神经网络进行分析的基础上,针对标准BP算法的不足进行了改进,并给出了通过对作用函数进行修正后所得到的改进BP算法的应用实例。 相似文献
11.
基于遗传算法优化BP神经网络的风电功率预测 总被引:1,自引:0,他引:1
随着大量风电开始并入电网,风电场输出功率预测对接入大量风电的电力系统的运行有重要意义。针对神经网络在风电功率预测中结构和权值参数难以确定,预测精度不高等问题,提出利用遗传算法对神经网络的拓扑结构和网络权值进行优化,并将其应用于风电场功率预测,研究表明预测精度有一定程度的提高。 相似文献
12.
基于遗传算法优化的BP神经网络研究应用 总被引:1,自引:0,他引:1
《现代电子技术》2018,(9):41-44
为提高BP神经网络预测模型对超市大米日销售预测的准确性,提出一种基于遗传算法优化的BP神经网络预测方法。介绍了BP神经网络和遗传算法的特点以及存在的缺陷,并进一步研究了BP神经网络和遗传算法相结合的有关技术,利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型获取最优解,充分发挥了BP神经网络的局部搜索能力和遗传算法的全局搜索能力的优势。仿真结果证明,该方法对超市大米日销售预测具有更高的精度和更好的非线性拟合能力。 相似文献
13.
14.
15.
在入侵检测中应用神经网络技术,可以大大提高入侵检测的检测率,有效提高网络数据的安全。本文分析了BP神经网络应用于入侵检测的实现方式及存在的问题,并对现有的BP神经网络算法进行改进,阐述了基于BP神经网络入侵检测系统及仿真实验。 相似文献
16.
17.
针对接收信号强度指示(Received Signal Strength Indication,RSSI)定位模型易受环境影响导致测距误差较大的问题,提出了采用天牛须搜索(Beetle Antennae Search,BAS)优化后向传播(Back Propagation,BP)神经网络拟合测距模型,克服了对数衰减模型易受环境干扰、参数取经验值等问题。首先,利用卡尔曼滤波对RSSI值进行校正,将校正后的数据输入BAS-BP网络拟合出测距模型并通过测距模型输出距离值;然后,利用极大似然估计法求解未知节点的坐标。实验结果表明,与BP模型和粒子群优化的BP模型相比,改进方法收敛速度快,定位精度提高更加明显。 相似文献
18.