首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behaviour of UCl4 (0.01 mol L−1 up to 0.05 mol L−1) in 0.1 mol L−1 TBAPF6/DMF solution at vitreous carbon was studied, at room temperature, by cyclic voltammetry and potentiostatic techniques. The electrolytic solutions were analyzed by UV spectroscopy (UV), and the electrodeposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction (XRD). The cyclic voltammetric results, at low UCl4 concentrations (0.01 mol L−1), point that the reduction of U(IV) to U(0) occurs in two steps involving mainly U(IV) and U(III) species. The first electron transfer reaction is quasi-reversible and the second irreversible. The diffusion coefficient of U(IV) in DMF and the charge rate constant were determined to be 4.78 × 10−7 cm2 s−1 and 1.93 × 10−3 cm s−1 (at 0.02 V s−1), respectively.RBS data obtained from samples prepared at constant potential (−3.10 V) during 3 h at room temperature, indicated the presence of uranium particles deposited all over the vitreous carbon surface with aggregates in some places, confirming that the second reduction step corresponds to uranium electrodeposition. No crystallographic ordering could be seen by XRD, pointing to an amorphous character of the uranium films.  相似文献   

2.
Kai-Ping Wang  Hsisheng Teng   《Carbon》2006,44(15):3218-3225
Activated carbon fibers are known to contain pores with a small resistance for electrolyte migration while possessing a large electrical resistance between the fibers. A carbon powder derived from pulverization of PAN-based carbon fibers was examined as an electrode for electric double layer capacitors using H2SO4 as the electrolyte solution. The performance of conventional-type activated carbon powders derived from phenol-formaldehyde resin char was also measured for comparison. The fiber-derived carbon exhibited an electrical resistance comparable to that of the conventional carbons while showed a larger specific capacitance as well as a lesser extent of capacitance decrease at high currents due to a smaller pore resistance. An ultimate capacitance as high as 290 F g−1 can be reached for this fiber-derived carbon powder (with a BET surface area of ≈1300 m2 g−1). This large capacitance value was suggested to be associated with the high activity feature of the pore wall.  相似文献   

3.
The ruthenium oxide nanoparticles dispersed on multi-wall carbon nanotubes (CNTs) were successfully synthesized via microwave-polyol process combined with forced hydrolysis without additional thermal oxidation or electrochemical oxidation treatment. The HRTEM, Raman spectra and TGA curve indicate that CNTs were uniformly coated with crystalline and partially hydrous RuO2·0.64H2O nanoparticles of 2 nm diameter and the loading amount of ruthenium oxide in the composite could be controlled up to 70 wt.%. The specific capacitance was 450 Fg−1 of ruthenium oxide/CNT composite electrode with 70 wt.% ruthenium oxide at the potential scan rate of 10 mV s−1 and it decreased to 362 Fg−1 by 18% at 500 mV s−1. The specific capacitance of ruthenium oxide in the composite was 620 Fg−1 of ruthenium oxide at 10 mV s−1. The ruthenium oxide nanoparticles in ruthenium oxide/CNT nanocomposite electrode had a high ratio of outer charge to total charge of 0.81, which confirmed its high-rate capability of the composite through the preparation of the nano-sized ruthenium oxide particles on the external surface of CNTs.  相似文献   

4.
Electrodeposition of polyaniline (PAni) was performed across a broad pH range from pH 0.0 to 14.0. PAni films were found to grow from strong acidic environments at much faster rate and appeared to adopt different growth patterns from those grown from higher pH media, thus producing PAni films with very different morphologies ranging from nanofibres to microsized tubules to flakes like structures. The various morphologies of the PAni films were results of homogeneous and heterogeneous nucleation during electrochemical polymerization. These phenomena occurred under specific conditions which could be induced by varying the pH of the reaction media. Characteristic IR absorptions of the films deposited from increasing pH environment indicated little differences in chemical structure of the polymers except for the film grown from pH 14.0. Cyclic voltammetry data also indicated different electron transfer efficiency as a result of different morphology adopted. All except for PAni films obtained from pH 2.0 to 4.0 gave high specific capacitance at around 450 F g−1 in 0.5 M H2SO4 and in 1.0 M NaNO3 (pH 1.0) solution using 1.0 mA cm−2 charging and discharging current density.  相似文献   

5.
LiFePO4/carbon composite was synthesized at 600 °C for 4 h in an Ar atmosphere by a stearic acid assisted rheological phase method using amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/carbon composite has good crystallinity, ultrafine and well-dispersed particles of 60–150 nm size and in situ carbon coated on the surface of LiFePO4 crystallites. The synthesized LiFePO4/carbon composite shows a high discharge capacity of 160 mAh g−1 and 155 mAh g−1 at rates of 0.5 C and 1 C, respectively. Even at a high current density of 30 C, the material still presents a discharge capacity of 93 mAh g−1 and exhibits an excellent cycling performance.  相似文献   

6.
Da-Wei Wang  Feng Li  Gao Qing Lu  Hui-Ming Cheng   《Carbon》2008,46(12):1593-1599
Ferromagnetic hierarchical porous carbon (FHPC) with nickel particles embedded in the hierarchical porous carbon skeleton was synthesized. The hierarchical macro–mesoporous skeleton was formed by dissolving a salt template of Na2CO3 and the ferromagnetic nickel particles were produced by in situ carbothermal reduction of nickel oxide. The saturation magnetization, remnant magnetization and coercive force of FHPC are 11.3 emu g−1, 2.3 emu g−1 and 55.7 Oe. The ferromagnetic property enables the magnetic separation of the FHPC from water. The surface chemical environments of the FHPC consist of different oxygen functional groups, like –OH, >COO and >CO groups, as well as a trace amount of aliphatic species of –CH3 or -CH2- structures. Dye separation performance of the FHPC was investigated using methylene orange, and the adsorption capacity was 0.16 mg m−2 with the adsorption kinetics constant of 2.2 m2 mg−1 min−1, which is superior to that of magnetic carbon spheres.  相似文献   

7.
Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride (bmimCl) and their ternary and binary solutions in bmimCl was studied at various working electrodes at 373 K by cyclic voltammetry and chronoamperometry. Ruthenium (III) chloride forms a stable solution with bmimCl and the cyclic voltammogram of ruthenium (III) in bmimCl recorded at glassy carbon electrode consisted of several redox waves due to the complex nature of ruthenium to exist in several oxidation states. Electrolysis of ruthenium (III) chloride in bmimCl at the cathodic limit of bmimCl (−1.8 V (vs. Pd)) did not result in ruthenium metal deposition. However, it was deposited from bmimPF6 and bmimNTf2 room temperature ionic liquids at −0.8 V (vs. Pd). The electrochemical behavior of ruthenium (III) in bmimCl in the presence of palladium (II) and rhodium (III) was studied by cyclic voltammetry. The presence of palladium (II) in bmimCl favors underpotential deposition of ruthenium metal. The nuclear loop at −0.5 V (vs. Pd) was observed in all solutions when palladium (II) co-existed with other two metal ions. Nucleation and growth of the metal on glassy carbon working electrode was investigated by chronoamperometry. The growth and decay of chronocurrents has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei.  相似文献   

8.
Deposition of amorphous iron(III)-oxide films on a conducting glass substrate was achieved via a cathodic bias in a 0.1 M hydrated ammonium iron(II) sulfate ((NH4)2Fe(SO4)2·6H2O) solution at −1.6 V versus Ag/AgCl. Analysis by X-ray absorption near edge structure confirmed the iron(III) feature of the amorphous films. The deposited films exhibited n-type semiconducting characteristics by showing photoresponses under an anodic bias. The Mott–Schottky method and cyclic voltammetry were employed to characterize the semiconducting properties of the deposited films, which included the band gap (2.2 eV), the potentials of the conduction and valence band edges and flat band (−0.6, +1.6 and −0.58 V versus Ag/AgCl at pH 7, respectively), and the donor density (1 × 1022/cm3). The deposited iron(III)-oxide films were suitable to serve as an anode for water splitting under illumination.  相似文献   

9.
A novel EDOT–nonylbithiazole–EDOT based bis(3,4-ethylene-dioxythiophene)-(4,4′-dinonyl-2,2′-bithiazole) comonomer was synthesized and was electrochemically deposited onto carbon fiber electrode as an active electrode material. An electrochemical impedance study on the prepared electrodes is reported in this paper. Capacitive behavior of the carbon fiber microelectrode/poly(3,4-ethylene-dioxythiophene)-(4,4′-dinonyl-2,2′-bithiazole) system was investigated with cyclic voltammetry (CV) experiments and electrochemical impedance spectroscopy. Variation of capacitance values by scan rate and specific capacitance values at different potentials are presented. Specific capacitance value for a galvanostatically prepared polymer film with a charge of 5 C cm−2 was obtained about 340 mF cm−2. Effect of the solvent and the deposition charge on the capacitive behavior of the film was investigated using electrochemical impedance spectroscopy. An equivalent circuit model was proposed and the electrochemical impedance data were fitted to find out numerical values of the proposed components. The galvanostatic charge/discharge characteristic of a film was investigated by chronopotentiometry and the morphology of the films electrodeposited at different deposition charges were monitored using FE-SEM.  相似文献   

10.
We report the effects of gas composition pressure (GCP) on the optical, structural and electrical properties of thin amorphous carbon (a-C) films grown on p-type silicon and quartz substrates by microwave surface wave plasma chemical vapor deposition (MW SWP CVD). The films, deposited at various GCPs ranging from 50 to 110 Pa, were studied by UV/VIS/NIR spectroscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and current–voltage characteristics. The optical band gap of the a-C film was tailored to a relatively high range, 2.3–2.6 eV by manipulating GCPs from 50 to 110 Pa. Also, spin density strongly depended on the band gap of the a-C films. Raman spectra showed qualitative structured changes due to sp3/sp2 carbon bonding network. The surfaces of the films are found to be very smooth and uniform (RMS roughness < 0.5 nm). The photovoltaic measurements under light illumination (AM 1.5, 100 mW/cm2) show that short-circuit current density, open-circuit voltage, fill factor and photo-conversion efficiency of the film deposited at 50 Pa were 6.4 μA/cm2, 126 mV, 0.164 and 1.4 × 10− 4% respectively.  相似文献   

11.
At present, graphite (LiC6: 372 mAh g−1, 840 mAh cm−3) is used as the anode material for lithium-ion batteries. However, methods to enhance the energy density, cyclability, initial Coulombic efficiency, and rate capability of lithium-ion batteries are still actively being researched. Here, we report a simple, fast, and novel method for transforming micron-sized Sn and Sb powders into ca. 10 nm- and 2–3 nm-sized SnSb crystallites by mechanochemical synthesis and electrochemical reactions, respectively. These nanocrystallites are uniformly distributed in an amorphous carbon matrix, resulting in a SnSb/C nanocomposite structure. The fabricated SnSb/C nanocomposite showed excellent electrochemical properties, such as a high energy density (1st charge: 706 mAh g−1), long cyclability (ca. 550 mAh g−1 over 300 cycles), good initial Coulombic efficiency (ca. 81%), and a fast rate capability (1C: 590 mAh g−1, 2C: 550 mAh g−1).  相似文献   

12.
An approach based on pulse potential electrochemical deposition is demonstrated to be an attractive technique to improve the electrochemical performance of supercapacitors. Ruthenium oxide was electrochemically prepared onto an aligned carbon nanotube (CNT) film substrate by the control of on/off-time values of pulse potential method. A very thin and uniform coverage of amorphous RuO2–H2O nanoparticle layer on CNT was obtained. The pulse potential cycle was found to control the nucleation and growth of crystalline Ru and RuO2 particles. The high rate capacitive performance was achieved by the redox reaction of amorphous hydrous ruthenium oxide instead of crystalline RuO2. Preparing the electrode using 2 s on-time/5 s off-time at a controlled pulse voltage of 1 eV for 450 cycles results in a high capacitive performance of 1240 mF/g at a scan rate 50 mV/s.  相似文献   

13.
The cathode material is synthesized from FeC2O4·2H2O and LiH2PO4 by a solid-state reaction using citric acid as a carbon source. The electric conductivity of the synthesized LiFePO4 has been raised by eight orders of magnitude from 10−9 S cm−1. The LiFePO4/C composite shows a greatly enhanced rate performance and the cyclic stability at room temperature. It delivers an initial discharge capacity of 128 mAh g−1 at 4C, which is retained as high as 92% after 1000 cycles. In addition, the tested low temperature character is attractive. At −20 °C, the composite exhibits a discharge capacity of 110 mAh g−1 at 0.1C. The homogenous morphology, the porous surface, the small particles inside and the conductive carbon observed contribute much to obtain the favorable electrochemical performance.  相似文献   

14.
The focus of this investigation is the development of a solvent impregnated resin for phenol removal from dilute aqueous solutions. Using a solvent impregnated resin (SIR) eliminates the problem of emulsification encountered in liquid–liquid extraction. Impregnated MPP particles and impregnated XAD16 particles are successfully used for phenol extraction. Impregnated MPP particles are preferred, as impregnated XAD16 particles show less mechanical strength and are more expensive. Impregnated MPP particles perform better compared to other synthetic adsorbents and basic ion exchangers. The maximum phenol capacity of impregnated MPP particles with 0.99 mol Cyanex 923 kg−1 SIR is 4.1 mol kg−1 SIR (386 mg g−1 SIR) and of MPP particles containing 1.47 mol Cyanex 923 kg−1 SIR it is 5.08 mol kg−1 SIR (478 mg g−1 SIR). The regenerability of impregnated MPP particles is easy and complete, and the particles are stable during several cycles. The equilibrium constants for the extraction of phenol are determined as Kchem = 37 L mol−1 and Kphys = 18 (mol L−1) (mol L−1)−1. With these values the SIR isotherms can be satisfactorily described.The results indicate that SIR technology is a promising alternative for the conventional phenol removal technologies at low phenol concentration levels.  相似文献   

15.
Carbon nanofibres have been prepared by a floating catalyst procedure at industrial scale in a metallic furnace. The nanofibres (50-500 nm diameter and 5-200 μm length) are grown from the Fe particles used as catalyst. Soot appears together with the carbon nanofibres. The sample has been chemically activated using KOH as activating agent. Scanning electron microscopy has shown a smooth surface for the as-prepared carbon nanofibres but a rough surface for the activated ones. The specific surface area increases from 13 to 212 m2/g due to the activation. The volume of the micropores (in the 1-2 nm range) and the mesopores (2-5 nm range), as deduced by density functional theory methods, also increases after the activation. Electrochemical behaviour of the as-prepared and activated carbon nanofibres has been tested in a supercapacitor at laboratory scale using 6 M KOH aqueous solution as electrolyte. The specific capacitance, which is less than 1 F/g for the as-prepared sample, increase up to ≈60 F/g for the activated sample. Only a slight decrease in capacitance has been observed as the current density increases. Specific power of ≈100 W/kg at specific energy of 1 Wh/kg has been found in some particular cases. We have compared the electrochemical parameters of our activated carbon nanofibres with those of activated carbon nanofibres coming from a commercial sample; the latter was activated by the same way as our sample.  相似文献   

16.
Non-ionic surfactant F127 (PEO106–PPO70–PEO106) has been employed to enhance the mesoporosity of carbon aerogel (CA) for electric double layer capacitor application. Field emission scanning electron microscopy images exhibit that CA spheres prepared with F127 possess much coarser surface and smaller diameter. Furthermore, nitrogen sorption measurements show that the total pore volume of CA prepared with 0.6 wt.% F127 is 0.90 cm3 g−1 and the ratio of its mesopore volume to the total pore volume (mesoporosity) could reach 86%. The specific capacitance of this CA electrode is approximately 130.8 F g−1 in 4 M KOH, which is 45% higher than that of CA solely catalyzed by Mg(OH)2. The high specific capacitance of the CA is believed to be associated with its enhanced mesoporosity as well as the high pore volume. It also performs well in the galvanostatic charge/discharge measurement for supercapacitor.  相似文献   

17.
Catalytic efficiency, stability and environmental applicability of five iron(III) oxide nanopowders differing in surface area and crystallinity were tested in degradation of concentrated phenolic aqueous solutions (100 g/L) at mild temperature (30 °C), initially almost neutral pH and equimolar ratio of hydrogen peroxide and phenol. The catalyst properties were easily controlled by varying in reaction time during isothermal treatment of ferrous oxalate dihydrate in air at 175 °C. Although the catalytic efficiency clearly increases with the surface area of the nanopowders, it is not due to the solely heterogeneous catalytic mechanism as would be expected. The amorphous Fe2O3 nanopowders possessing the largest surface areas (401 m2 g−1, 386 m2 g−1) are the most efficient catalysts evidently due to their highest susceptibility to leaching in acidic environment arising as a consequence of phenol degradation products. Thus, these amorphous samples act partially as homogeneous catalysts, which was confirmed by a high concentration of leached Fe(III) ions in the solution (19 ppm). The crystalline hematite (α-Fe2O3) samples, varying in surface area between 337 m2 g−1 and 245 m2 g−1, are generally less efficient when compared to the amorphous powders, however their catalytic action is almost exclusively heterogeneous as only 3 ppm of leached Fe(III) was found in the reaction systems catalyzed by nanohematite samples. A significant difference in relative contributions of heterogeneous and homogenous catalysis was definitely established in buffered reaction systems catalyzed by amorphous Fe2O3 and nanocrystalline hematite. The nanohematite sample exhibiting the highest heterogeneous action was tested at decreased initial phenol concentration (10 g/L), which is closer to the real contents of phenol in waste waters, and at different hydrogen peroxide/phenol molar ratios to consider its environmental applicability. At the hydrogen peroxide/phenol ratio equal to 5, no traces of the leached iron were detected and the phenol conversion of 84% was reached. Moreover, such a high degree of conversion is accompanied by a decrease of the chemical oxygen demand (COD) from the initial value of 11.23 g/L to 4.22 g/L after 125 min. This fact indicates that the considerable fraction of primary reaction products was totally degraded.  相似文献   

18.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5–120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2–12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (ks) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 × 10−10 mol cm−2, 6.12 s−1, 5.9 × 10−10 mol cm−2 and 6.58 s−1, respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 (±0.2) × 103 M−1 s−1 and 5.5 (±0.2) × 103 M−1 s−1, respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 μM, 4.14 nA μM−1 nA μM−1 and 5 μM to 20 mM, and 0.36 μM, 7.62 nA μM−1, and 1 μM to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good reproducibility, simple preparation procedures and long-term stabilities of signal responses during hydrogen peroxide reduction.  相似文献   

19.
Multi-wall carbon nanotubes (CNTs) were coated with protonated polyaniline (PAni) in situ during the chemical polymerization of aniline. Uniform coating of CNT with PAni was observed by scanning electronic microscopy. An improvement in the covering of CNT composites was found by the association of poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT). The conductivity of composites has been compared with the conductivity of the PAni and CNT. A maximum conductivity of 96.8 S cm−1 has been found for a PAni/PDMcT/CNT composite. High capacitance value (289.4 F g−1) was also determined for this composite, indicating that all materials, PAni, PDMcT and CNT, remain active during the charge–discharge cycling. The reduction in the capacitance after 100 cycles was found to be less than 25%. The capacitive behavior of all materials was confirmed by impedance analysis.  相似文献   

20.
《Ceramics International》2021,47(21):29908-29918
The cellulose derived carbon/graphene/ZnO aerogel composite was prepared as an electrode in order to investigate the electrochemical properties. Carbon aerogel was synthesized using paper as an available cellulose source, and the composite was obtained through a new and simple preparation method including the immersion of monolithic carbon aerogel in graphene oxide/Zn2+ suspension and subsequent chemical reduction and freeze drying. The morphology, functional groups and crystalline structure of the samples were studied with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction Spectroscopy (XRD), respectively. Electrochemical performance of the prepared binder free electrodes was examined using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The data revealed that flexible carbon/graphene/ZnO composite resulted in a low density (0.035 g cm−3) electrode with the capacitance of 900 mF cm−2 at a high current density of 10 mA cm−2, lower IR drop and high cyclic stability (capacitance retention of 96%) after 1000 cycles, at 10 mA cm−2. These features were due to the presence of 3D porous conductive network, highly reduced graphene oxide, and the formation of ZnO nanoparticles on graphene sheets. Moreover, polyaniline (PANI) was introduced to carbon/graphene/ZnO composite electrode using electro-oxidation method at different reaction time and aniline concentration in order to achieve remarkably improved capacitance of 2500 mF cm−2 (at 10 mA cm−2) and low charge transfer resistance. Also, after the supercapacitor device assembly, the capacitance was retained. Based on the results, the synthesized composite is a promising material for new generation of lightweight freestanding electrodes with the high electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号