首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立以四轮侧偏角为输入的四轮独立转向车辆二自由度动力学模型。以四轮侧偏角绝对值之和为最小值,构建包含前馈和反馈控制的性能指标函数。根据动力学模型静态表达式和理想横摆角速度,获得前馈控制约束条件。建立车辆控制模型和理想跟踪模型,获得反馈控制约束。利用优化理论进行控制器求解,并进行仿真分析,讨论了车辆横摆转矩的选取与作用。建立人-车-路闭环仿真模型,进行模拟道路实验和实车低速跟踪实验,验证了控制器可根据路面附着情况分配各轮转角,充分利用路面附着条件,保证轮胎侧偏角处于较好附着区域。实验表明,控制器具有良好的跟踪性和鲁棒性,进一步提高了车辆的操纵稳定性。  相似文献   

2.
以四轮转向汽车为研究对象,建立七自由度车辆模型、轮胎模型、理想跟踪模型;设计直接横摆力矩和四轮转向相结合的车辆稳定性控制策略。以跟踪理想的质心侧偏角和横摆角速度为控制目标,设计滑模控制器产生车辆转向所需的横摆力矩和后轮转角,按单侧制动的方法将产生的横摆力矩分配到车辆的四个车轮上,通过制动力矩的分配以及转向角的修正,使车辆转向行驶时的横摆角速度和质心侧偏角跟踪理想模型。针对七自由度模型,在Matlab/Simulink中与比例控制四轮转向进行阶跃输入和正弦输入两种工况下的时域仿真对比。仿真结果表明,基于直接横摆力矩和四轮转向相结合的的控制策略有效减小了质心侧偏角,横摆角速度对理想值有很好的跟踪,提高了车辆的操纵稳定性,同时验证了横摆力矩分配的有效性。  相似文献   

3.
低附路面汽车动力学稳定性控制系统控制策略   总被引:7,自引:1,他引:7  
分析低附条件下轮胎-路面的附着特性和轮胎力特性,建立基于HSRI轮胎模型的四轮2自由度模型,分析汽车在实际工况下的动力学稳定特性。应用β法分析汽车车身稳定性控制的可控区间,结合车身稳定特性、前后轴稳定特性、轮胎稳定特性,确定低附路面上汽车动力学稳定性控制系统对侧偏角、横摆角速度状态偏差的控制目标。基于上述分析开发出低附路面汽车动力学稳定性控制策略,并通过仿真和实车试验验证了控制效果。  相似文献   

4.
为了降低电动车高速行驶时转向失稳带来的危险,提出了四轮转向与差动驱动联合控制策略以提高电动车转向时的高速稳定性。考虑轮胎非线性特性对整车的影响,在MATLAB中建立了电动车四轮转向与差动驱动联合控制下的整车动力学模型。以电动车转向过程中的质心侧偏角与横摆角速度为控制目标,采用模糊控制策略协调四轮转向与差动驱动进行联合控制,从而调节电动车的后轮转角和驱动力分配,使其质心侧偏角和横摆角速度能够跟随理想模型。通过仿真分析得到了转向时电动车的质心侧偏角和横摆角速度的动态响应。结果表明:在四轮转向与差动驱动联合控制下,可以将电动车质心侧偏角与横摆角速度控制在接近理想状态,从而提高电动车在高速时的转向稳定性并加快车辆的侧向响应速度。  相似文献   

5.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

6.
为解决四轮独立驱动移动机器人在转弯时易出现不稳定的问题,并提高其转弯性能,针对一种四轮独立驱动移动机器人,根据移动机器人各车轮转矩可单独控制的特点,首先,运用达朗贝尔原理建立以质心侧偏角和横摆角速度为状态变量的四轮独立转向动力学模型,然后,运用直接横摆力矩控制方法,设计以质心侧偏角和横摆角速度为控制系统状态变量的指数趋近律动力学滑模控制策略,以使移动机器人质心侧偏角控制在稳定范围内,且其横摆角速度能够很好地跟踪移动机器人期望运动轨迹。最后,通过基于Matlab/Simulink进行转向行驶控制仿真试验,结果表明,与前馈反馈控制方法相比,基于所建立动力学模型所设计滑模控制策略有效改善了移动机器人的转弯控制稳定性。  相似文献   

7.
基于车辆模型,针对四轮转向系统提出一种定前后轮比例控制策略,对四轮转向系统的控制稳定性进行研究。研究结果表明,相比传统前轮转向系统,横摆角速度反馈的四轮转向系统波动较小,超调量较小,达到稳定的时间较短。同时,定前后轮比例控制的四轮转向系统在车辆横摆角速度与质心侧偏角响应方面表现出更强的稳定性。采用定前后轮比例控制的四轮转向系统,可以有效改善车辆的动态稳定性,提高车辆的操纵稳定性。  相似文献   

8.
吴昊 《机械与电子》2023,41(2):37-40
针对无法在不同环境下改变控制规则,导致对汽车控制时获得的横摆角速度、质心侧偏角、车轮转角与理想模型偏差大,车身侧倾角大,存在控制性能差的问题,提出新能源汽车主动四轮转向系统稳定性控制方法。构建了汽车横向动力学模型、垂直运动模型、运动状态方程以及路面输入模型,设计了自适应模糊控制器,将可调因子引入自适应模糊控制器中,使控制器可以适用于不同环境,完成新能源汽车主动四轮转向系统的稳定性控制。实验结果表明,所提方法应用后,可实现汽车主动四轮转向系统稳定性控制。  相似文献   

9.
轮胎侧偏特性是汽车动力学稳定性控制的基础,轮胎侧偏角是用来表征车辆侧向状态稳定性的重要参量。基于动力学模型的轮胎侧偏角观测方法,在复杂工况下因侧倾转向和变形转向的影响而精度变差,为此提出一种基于自适应双曲正切滑模观测器理论的新型联级观测算法。在车辆的二自由度模型基础上,利用CarSim与Simulink建立车辆联合仿真模型。针对双移线和紧急避障两种典型工况,对比分析了滑模观测算法和自适应双曲正切滑模联级观测算法的侧偏角误差值。结果表明:在不同工况下自适应滑模联级观测算法与滑模观测算法相比,观测误差最大可有效降低61.44%,充分体现算法具有更高的准确性与鲁棒性。  相似文献   

10.
针对电动汽车的高速行驶稳定性问题,对四轮独立制动/驱动、四轮独立转向电动汽车进行了研究。提出了一种轮胎力优化分配控制算法,提高极限工况下车辆稳定性。首先,根据驾驶员的转向、制动/驱动输入,基于理想二自由度车辆模型算出横摆角速度、质心侧偏角的目标值,然后比较目标值与车辆实际值得出偏差,再根据目标值与实际值的偏差采用滑模控制计算出了所需的总横摆力矩、侧向力、纵向力。最后基于八自由度车辆模型,通过最优分配控制算法,计算出了每个车轮上需要施加的纵向力与侧向力。利用Matlab/Sinmulink与车辆动力学软件CarSim联合仿真验证了基于车辆稳定性的轮胎力优化分配效果。仿真结果表明,提出的轮胎力优化分配算法在高速急转向工况下能够使车辆保持理想的横摆角速度和质心侧偏角,提高了极限工况下车辆稳定性。  相似文献   

11.
《机械科学与技术》2015,(8):1289-1293
提出一种基于直接横摆力矩控制(DYC)和前轮主动转向(AFS)控制的车辆稳定性联合控制方法。在车辆非线性模型的基础上,利用质心侧偏角和侧偏角速度相平面图,确定车辆的稳定域。对处于稳定域之外的非线性车辆首先进行DYC控制,使车辆进入稳定域,在此基础上再进行AFS滑模控制,使实际车辆的质心侧偏角及横摆角速度跟踪理想值。仿真结果表明:采用该联合控制方法,与单独采用AFS控制相比,更加有效地提高了车辆稳定性。  相似文献   

12.
在极限轮胎-路面条件下,智能汽车的横向操纵性能急剧恶化,增加了自动驾驶系统的控制难度。现有研究主要聚焦智能汽车轨迹跟踪的性能,但是难以解决低附着路面、紧急避障等极限工况下的智能汽车轨迹跟踪时的安全性和稳定性。利用模型预测控制方法实现了智能汽车的轨迹跟踪,同时保证智能汽车行驶稳定性和安全性,仿真试验同样表明该控制器具有较好的鲁棒性。结合二次型代价函数和安全约束构建了轨迹跟踪的开环最优预测控制问题,通过约束车辆的前后轮侧偏角,保持极限工况下智能汽车的行驶稳定性。研究方法与结果可为智能汽车设计提供参考。  相似文献   

13.
使用传统模型预测控制对车辆轨迹进行跟踪时,模型中的路面附着系数往往为特定工况下的经验数值。当车辆在未知路面行驶时,现有控制算法难以对路面附着系数进行及时修正,并调整预测控制模型内的约束,进而导致车辆横向失稳。针对此种情况,提出一种考虑实时路面附着系数估计的横向跟踪控制策略,用于实现车辆横向轨迹跟踪。该算法针对路面附着系数未知的工况,利用车辆当前横纵向加速度、横摆角速度、前轮转角等状态量,通过扩展卡尔曼滤波预测路面附着系数后,再对控制模型中的侧偏角约束量进行实时调整,以保证车辆在未知路面工况下的行驶安全,使车辆跟随预期轨迹行驶。实验表明,将扩展卡尔曼滤波法与模型预测控制结合的控制算法具有可行性,且有效提高了车辆在不同附着系数路面行驶时横向轨迹跟踪的稳定性及鲁棒性。  相似文献   

14.
针对多轴车辆轮胎磨损较为严重的特点,建立多轴车辆转向动力学模型。在考虑轮胎侧偏磨耗功率分析的基础上,在保证车辆质心侧偏角为零的前提条件下,以整车轮胎磨耗功率最小为目标,以车辆匀速行驶受力平衡为约束条件,利用拉格朗日乘子算法对多轴车辆各轮胎侧偏角进行优化,获得了多轴车辆在匀速转向行驶过程中各轴轮胎侧偏角和驱动力的函数关系式;得到轮胎侧偏磨耗最小条件下的轮胎侧偏角和驱动力的变化规律。分析结果表明:车辆同轴左右侧轮胎侧偏角相等时,轮胎侧偏磨耗功率最小;在轮胎侧偏磨耗功率最小的条件下,轮胎侧偏角、驱动力不仅与车辆质心位置、车轴分布、轮胎侧偏刚度结构有关,而且与车辆的行驶状态有关;控制方法简单易实现,可有效降低轮胎磨耗,降低车辆使用成本。  相似文献   

15.
基于状态观测器的4WS车辆最优随动操纵研究   总被引:10,自引:0,他引:10  
建立了包含车身侧倾特性、转向系统特性和制动特性的四轮转向车辆动力学随动操纵控制模型。考虑到作为车辆状态量之一的车辆质心侧偏角难以测量,设计了用于重构车辆状态的状态观测器。最后,基于重构的车辆状态,运用最优控制理论设计了四轮转向车辆随动操纵控制器,实现了所谓的线传操纵(Steer by wire)。仿真表明,反映车辆操纵性能的车辆状态量能很好地跟踪驾驶员发出的操纵指令,车辆具有独特、良好的机动性能。  相似文献   

16.
殷国栋  陈南  李普 《中国机械工程》2004,15(14):1298-1301
对复杂的四轮转向车辆控制系统数学模型进行分析,考虑在实际车辆中质心侧偏角等量难以直接测量,提出一种基于降阶观测器的四轮转向车辆随动操纵最优控制策略,以车辆转向时的质心侧偏角和横摆角速度等为被控制量,应用最优控制理论设计反馈控制系统进行高速行驶下的瞬态操纵动态仿真,结果表明,基于降阶观测器的系统状态向量能很好地跟踪驾驶员发出的操纵指令,车辆瞬态操纵稳定性和安全性得到有效提高。  相似文献   

17.
四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。  相似文献   

18.
横摆稳定性和轨迹跟踪性能对无人车至关重要。为此,提出一种基于模型预测控制的轨迹跟踪控制器,将考虑瞬时极限性能的稳定性判据添加到控制器约束中,并且利用性能驱动的方式对控制器的参数进行优化。首先根据车辆3自由度动力学模型建立横摆角速度-质心侧偏角相平面,分析前轮转角对相平面平衡点的影响,通过建立相平面的等倾几何曲线,分析车辆的稳定性特征,设计出基于包络线的横摆稳定性判据。然后将模型预测控制器的代价函数参数化,根据性能目标设计特定场景的全局代价作为评价函数,利用贝叶斯优化进行预测时域和代价函数权重两类参数的优化,实现目标任务全局性能最优。仿真和实车试验表明,所提算法在保证车辆稳定的前提下,发挥了车辆的动力学极限,采用的贝叶斯优化方法对轨迹跟踪模型预测控制器的参数进行了优化,实现了轨迹跟踪性能的提高。  相似文献   

19.
宋宇  陈无畏  陈黎卿 《中国机械工程》2014,25(20):2788-2794
通过ADAMS/Car软件建立了车辆虚拟样机模型,车辆模型具有四轮独立制动和四轮转向的能力。在车辆稳定性系统和四轮转向系统的基础上,基于MATLAB设计了一种分层式集成控制系统,由上层控制器和下层子系统控制器组成。下层子系统控制器包括车辆稳定性控制子系统(以目标横摆角速度为控制目标)和四轮转向控制子系统(以车身质心零侧偏角为控制目标)。上层控制器为基于规则的系统管理控制器,考虑子系统间的相互耦合因素,协调子系统间的工作关系。理论分析和仿真结果表明,构建的分层式集成控制系统是一个行之有效的综合仿真和优化控制的系统,其性能优于单独控制和叠加控制,使车辆的操纵稳定性和安全性得到显著提高,所得结果为集成控制在车辆工程中的实际应用提供了参考。  相似文献   

20.
基于动力学模型对车辆质心侧偏角进行了估计。为使轮胎模型能够适应不同附着系数的路面,将动态参数引入“魔术公式”轮胎侧偏力模型。应用状态空间形式的自回归最小二乘算法(RLS)设计了车辆质心侧偏角估计器。通过车辆在高附着系数路面的蛇形试验和变附着系数路面的双移线试验对估计方法进行了验证,结果表明,即使车辆出现大侧偏情况使轮胎进入到侧偏角-侧偏力特性曲线的非线性区域,提出的估计方法也能够实现对质心侧偏角的估计。将该估计方法与扩展卡尔曼滤波估计在精度、计算效率和使用条件等方面进行了比较,进一步表明所提出方法具有良好性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号