首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
一种非球面超精密单点磨削与形状误差补偿技术   总被引:5,自引:1,他引:5  
随着各种小型的非球面光学零部件的广泛应用,其成型模具的制造精度要求也日趋提高.针对目前我国尚未完全掌握非球面模具的超精密磨削技术的情况,对超精密单点磨削和形状误差补偿方法进行研究.利用在位接触式的测量系统的测量数据重构实际的磨削轮廓曲线.根据实际磨削轮廓与目标轮廓之间的法向距离,求解出法向残余误差,并提出基于超精密单点斜轴磨削的形状误差补偿方法.利用超精密磨床对口径为6 mm的超硬碳化钨的非球面光学模具进行超精密磨削、在位测量与误差补偿试验,经过两次循环,其形状精度(Peak to valley,PV)从449 nm改善至182 nm.  相似文献   

2.
根据高精度非球面制造及测量的需求,设计并实现了高精度非球面制造及测量系统的控制软件。系统基于工控PC机和Windows98操作系统,并选用Delphi 6.0和Visual Fortran作为开发工具。系统采用在线误差补偿加工技术,可选择平面砂轮和圆弧砂轮两种加工方式,达到加工高精度光学非球面镜的要求。  相似文献   

3.
为实现对磨削加工阶段大口径非球面光学元件的精密测量,提出一种基于坐标测量的多段拼接综合优化数据处理模型。基于多体系统理论、最小二乘原理建立两段面形轮廓拼接数学模型;提出基于曲率原理和非球面方程最小二乘拟合的冗余数据剔除数学模型;建立多段拼接的综合优化处理模型;利用Taylor Hobson轮廓仪对口径为176 mm的非轴对称非球面光学元件的3条母线进行分段测量试验并通过文中提出的数学模型进行数据拼接处理,试验结果表明,拼接测量结果与单次测量结果相比,误差最大值的平均值为0.25μm,最小值的平均值为–0.22μm,比该光学元件的面形峰-谷值2.77μm高出一个数量级,达到检测要求。试验结果证明所提多段拼接综合优化数据处理模型的正确性及有效性,该模型可以进行工程应用。  相似文献   

4.
小型非球面轮廓测量仪的原理及应用   总被引:3,自引:3,他引:3  
介绍了自行研制的FLY-I非球面轮廓仪的设计以及测量软件数学模型,其实用精度为1~2 μm.光学元件的抛光精度取决于精磨精度,本实验室现有的LOH高精度铣磨机床经过对第1次精磨后的光学元件面形进行修正,2次精磨后其精磨精度可达到2 μm.研究了这一非球面轮廓仪以配合LOH铣磨机床,测量得到1次精磨后的面形误差数据,经过误差反馈进行2次精磨,以保证光学元件的精磨精度.通过多次实验以及数据处理、分析,证明自行设计、装调的非球面轮廓仪达到了设计的精度要求,可满足实验室,光学加工车间对小型非球面精磨阶段面形的检测要求,即精磨面形误差在2 μm以内,同时也可直接用于中低精度非球面光学元件的最终检测.  相似文献   

5.
一直以来,非球面元件加工制造难度高,检测技术更是非球面制造技术中的瓶颈。本文介绍了一种基于无线网络的光学非球面精密检测系统的软、硬件工作原理及设计方案,通过对温度、变形、振动等性能量进行采样与数据分析的实验,证明了该系统的高效性和准确性。  相似文献   

6.
根据光学非球面检测平台结构,建立了误差补偿数学模型.用激光干涉仪检测三轴定位误差和直线度误差,采用最小二乘法拟合出多项式系数,得到误差曲线,叠加后实现了误差补偿.测量出3个运动坐标轴两两之间的垂直度误差,采用坐标旋转完成误差补偿.利用机构误差的分析和检定技术,完成非实时误差的补偿.利用标准球做了对比试验.结果表明,经误差补偿后的非球面检测平台精度明显提高.  相似文献   

7.
大中型光学元件高效精密磨削技术研究综述   总被引:1,自引:0,他引:1  
近年来,大中型光学元件(包括平面、球面、非球面及自由曲面)在大型天文望远镜、高功率激光核聚变装置及精密光学测量装置的应用日益广泛,其大批量生产需求驱动了高效精密磨削技术的长足发展。然而,超精密大中型光学元件的短周期、大批量生产对现阶段光学制造能力提出了巨大挑战,同时也推动着其磨削装备技术和磨削工艺技术向更高效率、更高精度及更高自动化水平的方向发展。系统总结大中型光学元件磨削装备技术中机床整机、主轴单元、进给工作台、数控系统和磨削工艺技术中脆性材料塑性去除机理、磨削工具、磨削液及其注入方式、工艺路线规划、检测、误差建模及补偿、环境监控等技术的研究现状,并对上述关键技术问题进行详尽的分析。同时,提出解决上述问题的可能性对策,预测和展望大中型光学元件高效精密磨削技术未来发展趋势。  相似文献   

8.
研究非球面光学元件确定性抛光中表面残余误差的评价方法。对两种非球面残余误差的评价方法,分别为轴向误差法和法向误差法,进行理论研究。指出非球面的残余误差理论上应使用法向误差法来评价,并提出一种基于轴向残余误差求解法向残余误差的方法,继而对二者进行比较发现两者存在一定的偏差,并且差值从非球面的中心向边缘方向逐渐增大。以气囊抛光和数控小磨头抛光为例,通过试验表明使用轴向误差法评价残余误差,进行确定性抛光引入了不同程度的加工误差,引入的加工误差的大小与非球面光学元件的口径和顶点曲率半径的比值(即"相对孔径")成正相关,故对于相对孔径较小的非球面光学元件在确定性抛光中可使用轴向误差法替代法向误差法作为残余误差的评价方法,反之,则应使用法向误差法。  相似文献   

9.
为了满足大口径非球面光学元件加工的需求,提出了用多模式组合加工(MCM)技术修正大口径非球面反射镜环带误差的方法。本文讨论的MCM技术以经典加工工艺为基础,采用抛光盘的多工位加工和抛光模式的组合完成光学元件的抛光,实现对光学表面中低频段误差的有效控制。介绍了MCM技术的重要组成部分JP-01抛光机械手的工作原理,分析了MCM的工作模式。采用MCM技术对Φ1230mm的非球面反射镜进行环带误差的修正,给出了镜面面形检测结果。实验结果表明,MCM技术可以有效地控制光学表面的中低频误差,使光学表面误差得到有效收敛,从而显著提高抛光效率。目前,采用MCM技术加工1~2m口径的同轴非球面,其精度可以达到30nm(RMS)。  相似文献   

10.
<正>中国科学院上海光学精密机械研究所信息光学与光电技术实验室周常河课题组近期将双目测量和时域散斑技术相结合,应用于300 mm口径大尺寸透镜毛坯测量,成功重建出透镜毛坯表面的三维形貌。该方法实现了大尺寸透镜的快速、低成本测量。大尺寸光学元件,尤其是非球面元件,被广泛运用在大型激光装置,例如"神光" II综合实验激光装置中。在元件的  相似文献   

11.
利用触发式测头对非球面零件进行接触测量时,由于其固有的预行程误差往往严重影响测量精度,为了降低该误差引起的精度损失,文中从测头自身结构出发,对预行程误差进行数学建模分析并研究其补偿方法。首先,对由于触发力产生的测杆变形位移和测球变形位移进行分析,并建立预行程数学模型;其次,根据测头触发力与被测件接触角度的不同,建立测头触发力模型;最终根据预行程数学模型,研究预行程误差的补偿问题。经实验证明,通过对测头结构特点分析出的测头预行程误差补偿方法,可以提高非球面零件的测量精度。  相似文献   

12.
针对微小非球面光学透镜模具的纳米单点斜轴误差补偿磨削进行研究。通过分析比较传统的直交轴磨削法,提出微小非曲面光学模具的单点斜轴磨削方式,有效避免微细砂轮在加工微小非球面时发生干涉情况;采用单点恒定磨削方式提高微小非球面磨削的稳定性及精度。通过分析磨削区域内微细砂轮与微小非球面的干涉情况,从而合理计算并选用较高强度的微细砂轮。提出微小非球面误差补偿磨削策略,分析砂轮的对心误差(x轴向和y轴向)对形状精度的影响,采用法向残余误差补偿的方法对加工后的形状误差进行超精密补偿磨削。利用超精密磨床对口径为2 mm的超硬热压模具碳化钨材料的微小非球面进行纳米单点斜轴误差补偿磨削试验,经过三次超精密磨削及误差补偿循环,其形状精度PV从1 034 nm改善至146 nm,表面粗糙度达到Ra2.19 nm。  相似文献   

13.
塑料光学元件制造   总被引:2,自引:1,他引:2  
杨相利 《光学仪器》2000,22(4):27-34
由于光学塑料具有许多杰出的优点 ,因而在照相机、光盘、投影镜头、眼镜等方面获得了日益广泛的应用。塑料光学元件的关键制造技术是模具设计和制造、选择合适的注塑设备、最佳的工艺参数等。为了制作以光盘物镜为代表的高精度非球面塑料透镜 ,就应采用注射压缩工艺抑制变形的成形技术 ,辅之以考虑变形而补偿模具的成形技术。  相似文献   

14.
对非球面光学元件加工检测进行了试验和研究,得出了具体的测试方案。在非球面大口径光学元件的精密磨削中,其磨削阶段的检测技术是工件加工的关键。通过对大口径非球面光学元件加工中工件旋转轴(A轴)、砂轮旋转轴(B轴)、工件平移轴(X轴)、砂轮平移轴(Y轴)、砂轮回转轴(C轴)的位置和速度所进行的检测,证明了所使用的检测方法是可靠的,能够顺利地完成对非球面光学元件加工过程的检测,实现了非球面光学元件的精密磨削,满足了设计的要求。  相似文献   

15.
高精度非球面具有广泛的、潜在的应用前景,非球面加工中的表面精度测量及补偿控制是制约其加工过程的关键因素.提出了基于CCD成像技术在线动态测量非球面的表面精度,研究了在线动态测量控制的结构方案,建立了基于CCD作为测量环节的计算机控制光学表面成形系统,提出了对表面精度的加工采用宏观形貌和微观形貌分段测量与控制的方法.  相似文献   

16.
干涉法实时测量浅度非球面技术   总被引:5,自引:2,他引:3  
提出了一种干涉实时检测非球面的新方法,该方法无需补偿器,CHG等辅助元件就能实现对浅度非球面的测量。对非球面度较小的非球面,直接利用标准球面镜作为参考表面,通过数字干涉仪可以测得全孔径位相分布,将所得的数据剔除参考球面波相对理论非球面的偏差,并运用最小二乘拟合求得机构定位误差,消去此误差,从而能够获得真实的面形信息。利用该方法对一口径为350mm的浅度双曲面进行了测量,通过数据分析和处理得到面形误差的PV值和RMS值分别为0.387λ 和 0.048λ ( =632.8nm)。并将该结果与零位补偿的检测结果相比较,两面形分布是一致的,其PV值和RMS值的偏差分别为0.033λ 和 0.006λ 。说明该技术对检测浅度非球面是切实可行的。  相似文献   

17.
非球面光学元件与球面光学元件相比具有诸多优点,例如:在不增加独立像差个数的前提下,增加了自变量个数,从而增加了像差校正的自由度。这一特点在实际工程应用中的意义在于:合理采用非球面的光学系统在体积、重量方面远小于球面系统,而成像质量却优于后者。以空间相机为例,采用全反射非球面光学结构,系统在保证高成像质量的同时,体积、重量、可靠性、发射成本等方面均优于球面系统。正因如此,非球面在航空、航天、国防以及高科技民用领域得到了广泛的应用。  相似文献   

18.
中大口径非球面光学元件的铣磨-精密磨削-快速抛光-超精密抛光的高精度、高效加工工艺技术是目前国内外学者研究的重点,精密磨削加工中的光学元件磨削面形在位检测技术是保证加工-检测-补偿、再加工-再检测-再补偿的关健技术。本文通过分析精密磨削的在位检测原理、方案、检测路径规划,提出了一种适合轴对称非球面精密磨削的电感式在位接触检测装置和自适应卡尔曼滤波数据处理方法,可有效剔除奇异项,给出数据预平滑处理的路径,通过Gauss-Newton非线性最小二乘法和NUEBS曲线法进行曲线拟合试验,给出了更利于补偿加工的曲线拟合方法,取得数控补偿合理参数,实现加工快速收敛,最大限度逼近实际加工面形。实验结果表明基于在位检测的随机误差标准差,经滤波后减少了1/3,验证了其在位检测技术结果的可行性,提高了磨削加工中的测量效率与测量精度。  相似文献   

19.
周炼  安晨辉  侯晶  陈贤华  王健 《光学精密工程》2017,25(12):3079-3088
针对非球面光学元件加工对圆弧金刚石砂轮形状误差测量的需求,提出了砂轮三维几何形貌在位检测与误差评价方法。建立了砂轮外圆面螺旋扫描轨迹测量数学模型,利用位移传感器获取了砂轮表面轮廓数据;对得到的数据匀滑滤波后沿圆周展开并进行插值处理,得到砂轮三维几何形貌。然后,根据非球面平行磨削加工特点,提出评价圆弧砂轮形状精度的指标。通过提取三维几何形貌轴截面轮廓,进行最小二乘圆弧拟合得到不同相位处的圆弧半径与圆心坐标,并由误差分离获得砂轮表面圆弧的圆度误差、圆周跳动误差及轮廓圆心轴向偏差。最后,对非球面加工圆弧金刚石砂轮进行检测,获得了砂轮的三维几何形貌以及多个关键尺寸及其误差数据:即圆弧金刚石砂轮的平均圆弧半径为55.442 3mm,半径波动极差为0.16mm,中央±8mm环带内圆弧的圆度误差约为5μm,圆周跳动误差约为2μm,截面轮廓圆心轴向位置相对偏差为0.008mm。根据检测结果,进行了大口径复杂非球面磨削实验,得到的元件面形P-V值为4.62μm,RMS值优于0.7μm,满足工程的实际需求。  相似文献   

20.
于瀛洁  齐特  武欣 《光学精密工程》2017,25(7):1764-1770
为了满足车间条件下大口径光学元件的高精度在位、在线检测的迫切需求,本文构建了一个适于一般环境下应用的动态干涉拼接测量实验系统。该系统由动态干涉仪、二维移动平台、控制系统及拼接软件等部分构成。应用该系统对200mm×300mm×20mm的光学元件在一般应用环境下进行了拼接测量实验,采用误差均化拼接算法进行拼接,并对拼接后的结果进行分析处理,比较拼接测量与全口径测量结果,PV值的相对误差为3.1%,RMS值的相对误差为1.6%,Power值的相对误差为2.1%。该系统为在车间环境下建立大口径光学元件在位检测建立了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号