首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为准确判定煤矿采空区自燃"三带"的范围,给工作面防灭火技术措施的制定提供支撑,以俄霍布拉克煤矿5106综放工作面为试验工作面,采用现场测试和数值模拟方法,确定了先划分采空区氧化带边界线后再划分自燃"三带"的思路。确定以氧气浓度6%为指标划分氧化带和窒息带的边界,以及以漏风风速0.24 m/min为指标划分氧化带和散热带的边界,进而划分采空区自燃"三带"。研究结果表明,进风侧采空区散热带<20.5 m,氧化带在20.5~127.6 m,窒息带>127.6 m;回风侧采空区散热带<20.2 m,氧化带在20.2~121.45 m,窒息带>121.45 m。该研究结果为5106工作面防灭火技术措施的制定提供了科学依据。  相似文献   

2.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

3.
通过实际观测采空区浮煤状况、工作面推进速度和采空区进回风侧O2浓度的分布规律,根据"三带"划分方法及划分指标,对白羊岭煤矿15101综放工作面进行了"三带"划分,掌握了采空区煤自燃"三带"分布规律及危险区域。15101工作面散热带的分布范围在采空区距离工作面10~100 m,进风侧由于漏风强度较大,散热带宽度较宽。窒息带在距离工作面165 m以上的采空区深部;在工作面回风侧,窒息带的深度约为137 m。氧化升温带宽度在工作面进风侧最大,达到55 m左右。  相似文献   

4.
王海生 《煤矿安全》2012,43(10):177-180
通过划分采空区自燃"三带",可以确定出工作面对自燃防治有利的最低月推进度。目前采空区自燃"三带"的划分还没有形成统一的标准。根据棋盘井煤矿0912工作面实际情况,沿采空区布置了4个测点,测定出采空区气体各组分变化规律,确定了低瓦斯矿井工作面采空区自燃"三带"的划分新方法。并利用Fluent软件,对采空区自燃"三带"进行了数值模拟。结果表明:0912工作面采空区自燃"三带"的范围为:散热带<24 m,自燃带24~113 m,窒息带>113m。为了保证在最短的自然发火期内,能将采空区内遗煤甩到自燃"三带"的窒息带以内,工作面最低月推进度应≥68 m。  相似文献   

5.
陈庆刚 《煤》2022,31(2):55-58
以陕西彬长文家坡矿业有限公司4105综放工作面具有自燃倾向性的4号煤为背景,通过现场实测和理论分析,利用氧气浓度指标和一氧化碳浓度指标对采空区自燃"三带"进行正确的划分,得到了以下的结论:(1)进风侧散热带为0~52 m;氧化自燃带为52~120 m;大于120 m为窒息带。回风侧散热带为0~3.2 m;氧化自燃带为3.2~41.6 m;大于41.6 m为窒息带。(2)4105工作面的最低推进速度3.5 m/d为其工作面的安全推进速度;每月的最低推进距离,即安全推进距离为105 m,当工作面每天推采速度大于3.5 m时,采空区的遗煤自燃一般都不会发生,当采面日平均推进度不超过3.5 m时,要采取针对性防灭火措施,可有效防止自然发火的现象发生。  相似文献   

6.
为了研究高河煤矿3#煤层W1310工作面采空区在Y型通风(柔膜墙沿空留巷支护)、高抽巷情况下采空区遗煤自燃发火规律、"三带"分布范围,对采空区遗煤自燃做出超前预测。通过在工作面布置束管监测系统,抽取采空区气体并用气相色谱仪化验,分析O_2、CO、CO_2、CH_4、C_2H_2、C_2H_4、C_2H_6等气体浓度变化,综合考虑来划分采空区自燃"三带"范围。最终确定"三带"范围,进风侧:散热带:0~45m;氧化升温带:45~135m;窒息带:大于135m。回风侧:散热带:0~20m;氧化升温带:20~43m;窒息带:大于43m。月推进速度大于70. 8m/月。实践表明,与工作面实际情况非常符合,防止了采空区自燃,为W1310工作面防灭火提供了有效的技术指导。  相似文献   

7.
针对浅埋近距离采空区下综采面采空区煤层自燃防治,以李家壕煤矿31115工作面为生产技术背景,采用理论分析与现场实测相结合的方式,研究了采空区气体浓度分布特征与采空区自燃"三带"分布范围。研究结果表明:由于上覆采空区气体下泄导致31115工作面采空区O2、CO气体浓度异常,下泄影响范围为采空区100 m以内;工作面进风侧散热带宽度为25 m,氧化升温带宽度为137 m,大于137 m为窒息带;回风侧散热带宽度为21 m,氧化升温带宽度为92 m,大于92 m为窒息带。  相似文献   

8.
赵玉玲 《采矿技术》2021,21(1):104-106
为掌握辛置煤矿2-208工作面采空区自燃三带的分布规律,在工作面建立束管监测系统,对采空区内可燃气体进行了监测。基于监测结果,得出采空区进风巷侧、中部、回风巷侧的散热带、氧化带、窒息带的范围,通过对监测数据用软件处理,得出采空区自燃危险区域主要为采空区回风侧16 m~59 m的范围,中部20 m~51 m的范围。基于采空区自燃危险区域的分析结果,确定对采空区采用黄泥灌浆+喷洒阻化剂+自燃危险区灌注高效阻化泡沫相结合的防灭火措施,保障采空区的安全。  相似文献   

9.
13164工作面因煤层分层回采导致煤炭遗留在采空区,为解决采空区遗煤自燃问题,采用束管法在工作面布置测点测定其走向方向上氧气及一氧化碳浓度,从其浓度上分析出13164采空区自燃"三带"宽度,测定得出13164工作面散热带为0~45 m、氧化带45~73 m、窒息带73m以里,同时分析出自燃"三带"形态;根据自燃"三带"形态,提出了注氮、减少采空区漏风及喷洒阻化剂多种措施相结合防治采空区遗煤自燃,防灭火效果显著。  相似文献   

10.
王竞楷  吕猛  张博威 《煤》2024,(2):14-17+23
采空区自燃“三带”范围的确定是矿井防灭火工作的关键。文章以O2体积分数划分法为依据对永智煤矿5101工作面“三带”进行了实测研究,并利用Fluent模拟了漏风风速和O2体积分数分布规律。结果表明:进风巷侧散热带范围为0~19.6 m,氧化带为19.6~68.2 m,窒息带在68.2 m之后。回风巷侧散热带范围为0~10.3 m,氧化带为10.3~36.3 m,窒息带在36.3 m之后;O2体积分数与采空区深度符合二次函数规律;数值模拟与现场实测结果基本相同。最后,计算出采空区工作面安全推进速度为1.47 m/d.  相似文献   

11.
王家福 《煤炭与化工》2021,44(11):95-98
为防止正益煤业11-104工作面采空区出现遗煤自燃现象,采用Fluent数值模拟软件进行工作面初采和正常回采期间自燃三带分布规律的分析,基于分析结果得出氧化自燃带的范围分别为:初采期间采空区进风侧和回风侧距工作面140~360 m和60~237 m,正常回采期间采空区进风侧和回风侧距工作面160~410 m和90~ 235m.基于采空区特征及自燃"三带"分布规律,设计防灭火方案为采空区密闭+埋管注浆+采空区注氮,并在防灭火方案实施后进行束管监测.结果 表明,防灭火方案实施后,采空区内CO最大浓度低于80 ppm,无自燃现象出现,保障了工作面的安全回采.  相似文献   

12.
李会兵 《煤》2021,30(1):14-16
针对王庄煤业3801工作面采空区遗煤自燃发火防治,通过理论分析确定使用O 2作为煤自燃预报指标气体来判断采空区自燃情况,根据现场监测结果确定了3801工作面采空区自燃三带分布范围。进风侧:0~20 m为散热带,20~125 m为自燃带,大于125 m为窒息带;回风侧:0~10 m为散热带,10~60 m为自燃带,大于60 m为窒息带。并计算出了工作面最小安全推进度为1.1 m/d。该研究结果为矿井防灭火工作提供了科学依据。  相似文献   

13.
《煤》2021,30(8)
针对王庄煤业3508综采工作面采空区煤层自燃防治,通过对3号煤层进行程序升温热解实验,得出将CO为标志性气体,C_2H_4可作为辅助性指标来判断煤层自燃情况。同现场束管监测和数值模拟采空区氧气浓度变化,确定了3508工作面采空区三带影响最广范围散热带:0~80 m;自燃带:80~140 m;窒息带:大于140 m; 3508工作面安全推进度为1.2 m/d。  相似文献   

14.
为防止寸草塔煤矿22煤层煤自燃,对22煤层采空区自燃"三带"进行划分.通过现场束管监测获得采空区内氧气浓度分布,并基于氧浓度的"三带"划分标准,得出22煤层采空区自燃"三带"范围,即运胶顺槽:散热带51 m,自燃带51~147 m,窒息带147 m;回风顺槽:散热带43 m,自燃带43~141 m,窒息带141 m.使用Fluent数值模拟软件模拟不同配风量和瓦斯抽放对自燃"三带"的分布影响,得出了配风量越大、抽放管道进入采空区深度越深、抽采负压越大,氧化带宽度也随之增大,煤自燃的危险性越大.  相似文献   

15.
针对某矿3801工作面采空区可能存在的煤自燃问题,采用现场测定与理论分析的方法对工作面采空区自燃"三带"进行了研究.研究结果表明:由支架切顶线到采空区25 m为散热带,由采空区内25~125 m为氧化升温带;向采空区125 m范围以外为窒息带.在此基础上,确定工作面最小安全推进速度为3 m/d,并提出了注氮与封堵相结合...  相似文献   

16.
为防治采空区自燃火灾发生,采用测定采空区温度和氧气浓度相结合方式对2324工作面采空区煤炭自燃三带进行了现场实测,得到了2324工作面采空区自燃三带宽度范围,并确定了工作面最小极限推进度。结果表明,2324工作面采空区三带范围为散热带小于11.82 m;自燃带11.82~65.90 m;窒息带大于65.90m,工作面回采时最小极限推进度为43 m/月。  相似文献   

17.
为精准测定神达金山矿13101综放工作面采空区"三带"区域,试验应用进、回风两侧采空区内O_2含量变化对其进行划分,得出工作面进风侧处散热带为0~30.4 m,氧化带为30.4~72 m,窒息带为72 m以里;回风侧处散热带为0~14.4 m,氧化带为14.4~36.8 m,窒息带为36.8 m以里;当13101工作面月推进速度大于12.89 m时,采空区无自然发火危险;当工作面月推进速度小于12.89 m时,采空区将有自然发火危险。  相似文献   

18.
为研究综采工作面采空区煤自燃“三带”分布范围,以大梁湾煤矿30103综采工作面为研究对象,通过现场布置束管、人工监测的方式收集采空区不同深度气体组分数据。采用数值模拟软件进一步分析采空区的氧气浓度,与现场实测数据相互辅证,确定30103综采工作面采空区自燃“三带”的分布范围为散热带(进风侧<104 m,回风侧<43 m)、氧化升温带(进风侧104~310 m,回风侧43~235 m)、窒息带(进风侧> 310 m,回风侧> 235 m)。结合煤层最短自然发火期,得到工作面安全推进速度为4.84 m/d,研究成果对该工作面采空区煤自燃预防具有一定指导意义。  相似文献   

19.
通过埋管方法对金源煤矿1361工作面采空区CO浓度、O2浓度以及温度分布特征进行了测定,确定了1361工作面采空区自燃"三带"的分布范围:进风顺槽附近氧化带在采空区后10.2~26m,回风顺槽附近氧化带在采空区后40.8~13.3m,采空区中部氧化带在3.7m~10.5m范围内.自燃"三带"的划分为合理选择预防采空区煤炭自燃的措施提供了科学的理论依据,同时积累了划分采空区自燃"三带"的实践经验,为金源煤矿1361工作面及其他工作面的安全生产奠定了基础.  相似文献   

20.
为了高效防治小青煤矿E1404工作面采空区煤炭自然发火,根据漏风风速和氧气浓度2种划分方法对采空区自然发火"三带"范围进行了数值模拟分析,得出E1404工作面采空区散热带为0~17.5 m,氧化自燃带为17.5~140 m,窒息带为大于140 m。进而在氧化自燃带范围内沿着工作面倾斜方向布置了3个高温点(靠近进风巷、工作面中间、靠近回风巷),采用COMSOL Multiphysics软件对温度场进行数值模拟,得出当高温区域越靠近进风巷时,采空区内的整体温度要大于靠近回风巷。基于采空区煤自燃危险区域分析结果,提出了上下隅角堵漏风和采空区注氮2种防灭火措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号