首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3500型热模拟试验机对40CrNiMo钢进行了单道次热压缩试验,得到了其在应变速率0.1~50s~(-1)、变形温度800~1 100℃下的应力-应变曲线,观察了变形后的显微组织并分析了热变形特征;建立了该钢的变形抗力模型并进行了试验验证。结果表明:较高的变形温度或较低的应变速率更有利于40CrNiMo钢的完全动态再结晶;变形温度为800℃时,应变速率增大使动态再结晶晶粒增多;应变速率为10s~(-1)条件下,当变形温度由800℃升至900℃时,动态再结晶晶粒增多,变形温度为1 000℃时,40CrNiMo钢发生了完全动态再结晶,变形温度为1 100℃时,动态再结晶晶粒长大;计算得到40CrNiMo钢的动态再结晶激活能为322.53kJ·mol~(-1);由周纪华-管克智模型计算得到的变形抗力与试验值的平均相对误差为4.82%,模拟精度较高。  相似文献   

2.
利用Gleeble-3500热模拟试验机对改进型12%Cr转子材料进行热压缩实验,研究其在变形温度为900~1 250℃,应变速率为0.001s~(-1)、0.01s~(-1)和0.1s~(-1)条件下的动态再结晶行为。实验表明:改进型12%Cr材料在热变形过程中随着应变速率减小,变形温度升高,发生动态再结晶的几率逐渐增大。通过实验数据建立该材料的动态再结晶模型,为实际生产工艺的编制提供理论依据。  相似文献   

3.
采用热模拟方法研究了18CrNiMo7-6齿轮钢在变形温度900~1 150℃、应变速率0.01~5 s-1条件下的热压缩变形行为;建立了基于Arrhenius模型的全应变本构方程,采用该方程对流变应力曲线进行预测;根据动态材料模型绘制热加工图,并结合热加工图系统地研究显微组织演变特征。结果表明:试验钢的峰值应力随应变速率的增加或变形温度的降低而增大,动态回复和动态再结晶是热变形过程中的主要软化机制;采用建立的全应变本构方程预测得到流变应力曲线与试验结果基本吻合,预测真应力与试验结果的相对误差小于4.715%,说明该模型可以精确地模拟18CrNiMo7-6齿轮钢的热压缩变形行为。试验钢的适合热加工工艺参数为变形温度1 050~1 150℃、应变速率0.1~1 s-1,此时组织为均匀细小的再结晶晶粒,晶粒尺寸在5~15μm。随着变形温度的升高或应变速率的降低,原始奥氏体晶粒不断被动态再结晶晶粒取代,且动态再结晶程度和再结晶晶粒尺寸增大。  相似文献   

4.
采用Gleeble-3500热模拟试验机研究00Cr12Ni10MoTi钢在变形温度为850~1 200℃、应变速率为0.01~10 s~(-1),变形程度为60%条件下的热变形行为。基于实验数据计算该钢的热变形激活能,获得其本构方程并进行组织演变分析。结果表明,该钢种的动态再结晶激活能Q=486.484 kJ/mol,变形温度升高或低应变速率条件下更易发生动态再结晶,该钢种获得均匀、细小再结晶晶粒的理想温度区间为1 050~1 150℃。  相似文献   

5.
采用Gleeble-3500型热力模拟试验机对新型CHDG-A06奥氏体不锈钢进行单道次压缩试验,研究了其在变形温度为950~1 100℃、应变速率为0.01~1s~(-1)条件下的热变形行为,并对变形后的显微组织进行了观察;根据试验钢的应力-应变曲线,通过线性回归建立了它的高温热变形本构模型。结果表明:在热变形过程中,变形温度和应变速率对流变应力的影响显著,流变应力随着变形温度的升高或应变速率的降低而降低;动态再结晶易发生在较低应变速率(≤0.1s~(-1))或较高变形温度(≥1 050℃)下;利用峰值应力求得该钢的双曲线正弦本构方程,并得到其热变形激活能为453.674 4kJ·mol~(-1)。  相似文献   

6.
用G1eeble 1500型热/力学模拟实验机对20Cr、40Cr和45钢进行了变形温度为1 050℃,应变速率为1,5,10 s-,变形量为0.7~0.9的热模拟单向压缩试验,分析了钢热变形过程中的真应力-应变曲线.结果表明:试验钢在应变速率为1,5 s-1的变形过程中,均发生了动态再结晶;动态再结晶阶段具有反复动态再结晶→变形→动态再结晶即交变出现软化→硬化→软化的现象;应变速率为10 s-1时,45钢发生了动态再结晶,动态再结晶阶段也具有交变软化→硬化→软化的现象,而20Cr和40Cr钢处于动态回复阶段.  相似文献   

7.
在Gleeb-3500型热模拟试验机上对铸态GCr15SiMn轴承钢进行热压缩试验,研究了变形温度(1 223~1 423K)和应变速率(0.1~10.0s~(-1))对流变应力的影响,观察了显微组织;采用基于TEGART和SELLARS等提出的Arrhenius方程,通过试验数据的拟合建立了试验钢的流变应力本构方程,并进行了验证。结果表明:在试验条件下变形时,试验钢的流变曲线均呈现出动态再结晶软化特征,提高变形温度或降低应变速率均可降低其流变应力;在应变速率1.0s~(-1)条件下,升高变形温度会促进试验钢的动态再结晶,同时也使晶粒长大粗化;在变形温度1 423K、应变速率0.1~1.0s~(-1)条件下,应变速率越大,动态再结晶晶粒越细;由建立的流变应力本构方程预测得到的峰值应力与试验结果的平均相对误差为0.393%,说明本构方程较准确。  相似文献   

8.
采用热力模拟试验研究了新型抗热损伤车轮钢20CrSiMnMo在温度为850-1250℃、应变速率为0.1~1s^-1条件下的热变形行为。结果表明:车轮钢在高温低应变速率下具有动态再结晶型流变曲线,低温高应变速率下其应力一应变曲线呈现硬化型;动力学分析得到该钢的热变形激活能Q=352.2725kJ/mol,应力指数n=5.56;组织观察和加工图表明,温度和应变速率参数选择在1000-1100℃,0.1~0.5s^-1或1250℃,1~0.25s^-1范围内变形,将获得细小的动态再结晶晶粒和转变组织。  相似文献   

9.
采用热模拟试验机对60Si2CrVAT高强度弹簧钢在不同温度(900,950,1 050,1 150℃)和应变速率下(0.1,1,5,10s~(-1))进行热压缩变形,研究了变形温度和应变速率对该钢热变形行为的影响规律;在此基础上,根据Arrhenius双曲正弦方程,建立了该钢的热压缩变形本构方程。结果表明:该钢的流变应力随着变形速率的增大而增大,随变形温度的升高而减小,动态再结晶在高变形温度和低应变速率下更容易发生;真应变为0.2时的变形激活能为372kJ·mol~(-1),流变应力的计算值与试验值之间的平均相对误差为4.89%,吻合得较好。  相似文献   

10.
采用Gleeble 3500型热模拟试验机对HG700汽车大梁钢进行单道次压缩试验,研究了其在变形温度950~1 150℃和应变速率0.01~5.00s~(-1)条件下的流变应力行为;根据真应力-真应变曲线,采用线性回归方法建立该钢的流变应力本构模型,并进行了试验验证。结果表明:在高应变速率(1.00,5.00s~(-1))下,HG700汽车大梁钢的动态软化行为以动态回复为主,而在低应变速率(0.01,0.10s~(-1))下,HG700汽车大梁钢发生了明显的动态再结晶;变形温度的升高及应变速率的降低均会促进流变应力的降低,且会促进应力更早达到峰值;由构建的以变形温度、应变速率、真应变为变量的流变应力本构模型得到的预测结果与试验结果吻合良好,该模型可准确地预测HG700汽车大梁钢的流变应力。  相似文献   

11.
在304不锈钢成分基础上,添加了质量分数1.96%的硼元素,采用真空感应熔炼技术制备含硼不锈钢,对该钢进行单道次热压缩试验,研究了该钢在900~1150℃ 和应变速率0.1~10 s-1条件下的热变形行为;根据试验数据,基于Arrhenius方程并结合5次多项式拟合建立该钢的热变形本构模型,对加工硬化率-真应力曲线进行分析确定该钢发生动态再结晶的临界条件.结果表明:在试验参数下热压缩后,含硼不锈钢的流变应力-应变曲线为典型的动态再结晶型,软化机制以动态再结晶为主;随着变形温度的升高或应变速率的减小,试验钢的峰值应力及其对应的真应变降低;采用所建立的热变形本构方程计算得到的真应力-真应变曲线与试验测得的相吻合,平均相对误差绝对值为2.76%,说明该本构模型能够准确预测含硼不锈钢的热变形行为;变形温度较高、应变速率较小时,该钢较易发生动态再结晶.  相似文献   

12.
采用Gleeble-3810型热模拟试验机在变形温度为8501 150℃、应变速率为0.01{50 s~(-1)的条件下对35CrMo钢铸坯进行了变形量为60%的热压缩变形试验,结合真应力-真应变曲线特征,研究了应变速率和变形温度对其压缩后显微组织的影响。结果表明:在不同条件下压缩变形后,试验钢的显微组织均具有动态再结晶特征;同一应变速率下,随着变形温度的升高,压缩后的动态再结晶晶粒逐渐变大;同一变形温度下,随应变速率的增大,动态再结晶晶粒逐渐变小;热压缩变形后,试验钢不同位置处的晶粒尺寸不同,中心区域大变形区的晶粒最为细小,随着距中心区域垂直距离和水平距离的增大,晶粒尺寸逐渐变大。  相似文献   

13.
采用Gleeble-1500D热/力模拟试验机研究SA508GR.3钢在应变速率为0.01~1 s~(-1)、变形温度为900~1 100℃条件下的热变形行为。讨论变形温度和应变速率对流变应力的影响规律,并获得SA508GR.3钢的热变形激活能和热变形本构方程。基于动态材料模型,建立起SA508GR.3钢的加工图,研究发现SA508GR.3钢的功率耗散效率η在0.1~0.5之间,当功率耗散效率η高于0.3时,在1 050~1 100℃的区间内,将发生动态再结晶。  相似文献   

14.
在MMS-200型热模拟试验机上通过单道次压缩试验研究了海洋平台用E40钢板的高温变形行为及动态再结晶行为;确定了该钢理想的加热温度。结果表明:随着变形温度的升高,该钢的动态再结晶临界切应力呈减小的趋势;动态再结晶的开始温度在900~950℃范围内;850℃时真应力-真应变曲线下降的主要原因是应变诱导铁素体相变;900℃以上时真应力-真应变曲线的下降是动态再结晶所致;其理想的变形加热温度为1 200℃。  相似文献   

15.
在Gleeble1500D热模拟试验机上开展了锻态SA508-3钢的单道次热压缩试验,研究了该材料的动态再结晶行为。试验参数为温度1 000℃~1 200℃、应变速率0.001 s-1~1 s-1。研究结果表明:SA508-3钢在高温低应变速率条件下均发生了动态再结晶现象。在此基础上,根据应力-应变曲线数据,建立了该材料的动态再结晶临界应变模型、动态再结晶百分数模型,结合压缩后试样的显微组织,建立了SA508-3钢的动态再结晶晶粒尺寸模型。  相似文献   

16.
用Gleeble-1500D型热模拟试验机对AZ31镁合金在变形温度200~400℃、应变速率0.01~1 s~(-1)条件下进行热模拟压缩试验,研究了该合金的热变形行为,并获得了其变形的主要特征参数,建立了高温流变数学模型和功率耗散图。结果表明:热压缩时,AZ31镁合金流变应力受温度和应变速率影响显著,应力-应变曲线呈现出明显的动态再结晶特征,温度越高、应变速率越小,动态再结晶越容易发生;热变形过程受变形激活能控制,得到流变应力的关系式lnε=35.74+9.96ln[sinh(0.01σ)]-1.96×10~5/RT,耗散系数随温度升高和应变速率降低而逐渐增大。  相似文献   

17.
以新开发的高强高韧20SiMn3NiA低合金马氏体钢为研究对象,用热模拟试验机对其在900~1 000℃进行了双道次压缩,应变速率为1.0s~(-1),道次间隔时间为1~100s,研究了其静态软化行为。结果表明:当变形温度为900℃时,随着道次间隔时间的延长,试验钢在第二道次变形时的真应力-真应变曲线由动态再结晶型(软化趋势大于硬化趋势)变为静态再结晶型(硬化趋势大于软化趋势),静态再结晶率由道次间隔时间为1s时的6.48%增至稳定值85%;当变形温度为1 000℃时,其第二道次变形时的真应力-真应变曲线均为静态再结晶型,静态再结晶率由道次间隔时间为1s时的84.48%增至100s时的96%;试验钢的静态再结晶激活能为448kJ·mol~(-1)。  相似文献   

18.
为了研究TC4钛合金丝材的拔制过程,对TC4合金进行了高温拉伸变形实验。研究了应变速率0. 1 s~(-1)时,不同温度(800℃、840℃、880℃、920℃和960℃),以及温度为920℃时,不同应变速率(0. 01 s~(-1)、0. 1 s~(-1)、1 s~(-1)和10 s~(-1))对TC4钛合金真应力-应变曲线及显微组织的影响。结果表明:当应变速率为0. 1 s~(-1)时,随着实验温度的升高,动态回复和动态再结晶出现,材料的流变应力逐渐降低。其显微组织表明,随着温度升高,α相变得粗大,并由原先的长棒状变为短棒状,β相的含量逐渐增多。当实验温度为920℃时,随着应变速率的增加,加工硬化速率变快,位错增殖,晶粒运动受阻,硬化不能及时消除,畸变能增大,导致峰值应力增大,流变应力峰值升高。其显微组织表明,随着应变速率增加,α相沿拉伸方向变细变长,逐渐趋于同向排列。  相似文献   

19.
利用Gleeble-3500型热模拟试验机,对铝质量分数分别为8%,10%,12%的三种铁-锰-铝-碳系低密度钢进行了不同变形温度(950~1 150℃)及应变速率(0.01~1.0s~(-1))下的压缩试验,研究了该低密度钢在高温下的塑性变形行为并观察了压缩变形前后的显微组织。结果表明:在950~1 150℃,应变速率0.01~1.0s~(-1)下变形时,三种试验钢的流变应力对温度和应变速率均较敏感,流变应力随着应变速率的增加及变形温度的降低而提高;变形后,铝质量分数为12%的试验钢组织中铁素体呈带状,不连续地分布于奥氏体基体中;在相同应变速率下,其奥氏体与铁素体晶粒随着变形温度的升高逐渐长大,相同温度较高应变速率下的奥氏体与铁素体晶粒较细小;铝质量分数为12%试验钢的动态再结晶热变形激活能为592.437kJ·mol~(-1),其Zener-Hollomon参数方程为Z=ε·exp(592.437/RT)。  相似文献   

20.
采用Gleeble-3500型热模拟试验机对FV520B马氏体不锈钢进行了单道次等温热压缩试验,研究了该不锈钢在变形温度为850~1 150℃和应变速率为0.005~5.000s~(-1)条件下的热变形行为,根据应力-应变曲线并基于Zener-Hollomon参数和Arrhenius双曲正弦方程,建立了该不锈钢在高温压缩时的本构方程,并对该本构方程进行了修正和试验验证。结果表明:FV520B马氏体不锈钢的流变应力随着变形温度的升高或应变速率的减小而降低;在0.005s~(-1)、1 000~1 150℃或0.050~5.000s~(-1)、1 075~1 150℃条件下,该不锈钢发生了较明显的动态再结晶;在0.005s~(-1)、850℃,5.000s~(-1)、850℃和5.000s~(-1)、925℃条件下,由建立的本构方程计算得到的流变应力与试验值存在较大的误差;对本构方程进行修正之后,流变应力的预测值与试验值的相关系数为0.997 88,平均相对误差为2.225%,修正后的本构方程可以准确地预测该不锈钢的热变形流变应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号