首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA repair has been proposed to be an important determinant of cancer cell sensitivity to alkylating agents and cisplatin (DDP). Nucleotide excision repair (NER), which represents one of the most important cellular DNA repair processes able to remove a broad spectrum of DNA lesions, is involved in the recognition and repair of the crosslinks caused by DDP and melphalan (L-PAM). In this study, the mRNA levels of the different genes involved in NER (ERCC1, XPA, XPB, XPC, XPD, XPF) were examined in a panel of eight different human cancer cell lines, together with the overall DNA repair capacity using a host cell reactivation assay of a damaged plasmid. A statistically significant correlation was observed between the relative expression of XPA/XPC (P < 0.05) and ERCC1/XPC (P < 0.05) mRNAs. No correlation was found between the DDP and L-PAM IC50S and the relative mRNA expression of the tested NER genes. When the overall cellular DNA repair capacity was studied, carcinomas seemed to have a higher repair activity than leukaemias; but this repair DNA activity correlated neither with the mRNA expression of the different NER genes nor with DDP and L-PAM IC50S. These data seem to suggest that even if the NER pathway is an important determinant for the cytotoxicity of alkylating agents, as demonstrated by the extremely high sensitivity to alkylating agents in cells lacking this repair system, other factors have to play a role in regulating the cellular sensitivity/resistance to these antitumour drugs.  相似文献   

2.
3.
The p21Cdn1 protein (cip1/waf1/sdi1) plays an important role as an inhibitor of mammalian cell proliferation in response to DNA damage. By interacting with and inhibiting the function of cyclin-Cdk complexes, p21 can block entry into S phase. p21 can also directly inhibit replicative DNA synthesis by binding to the DNA polymerase sliding clamp factor PCNA. When cells are damaged and p21 is induced, DNA nucleotide excision repair (NER) continues, even though this pathway is PCNA-dependent. We investigated features of p21-resistant NER using human cell extracts. A direct end-labelling approach was used to measure the excision of damaged oligonucleotides by NER and no inhibition by p21 was found. By contrast, filling of the approximately 30 nt gaps created by NER could be inhibited by pre-binding p21 to PCNA, but only when gap filling was uncoupled from incision. Binding p21 to PCNA could also inhibit filling of model 30 nt gaps by both purified DNA polymerases delta and epsilon. When p21 was incubated in a cell extract before addition of PCNA, inhibition of repair synthesis was gradually relieved with time. This incubation gives p21 the opportunity to associate with other targets. As p21 blocks association of DNA polymerases with PCNA but does not prevent loading of PCNA onto DNA, repair gap filling can occur rapidly as soon as p21 dissociates from PCNA. A synthetic PCNA-binding p21 peptide was an efficient inhibitor of NER synthesis in cell extracts.  相似文献   

4.
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).  相似文献   

5.
6.
There is strong epidemiological evidence that the hepatitis B virus (HBV) contributes to the development of hepatocellular carcinoma (HCC). In several immortalized cell lines, an in vitro transforming activity of HBV DNA and expression vectors for the viral protein X (HBx) has now been demonstrated. Furthermore, it appears as if still unknown parts of the HBV genome other than HBx contribute to the transforming activity of HBV DNA in vitro. Only one of several studies found that HBx-transgenic mouse lines develop HCC. A mouse line transgenic for the large surface protein of HBV develops HCC due to concomitant necroinflammatory infection. Growing evidence shows the importance of recombination of integrated viral DNA and cellular DNA for HCC development. A direct transforming potential of one of these viral integrates has been demonstrated. Chemical carcinogens are more effective in HBV-containing cell lines or transgenic mice.  相似文献   

7.
The yeast Rad4 and Rad23 proteins form a complex that is involved in nucleotide excision repair (NER). Their function in this process is not known yet, but genetic data suggest that they act in an early step in NER. We have purified an epitope-tagged Rad4.Rad23 (tRad4. Rad23) complex from yeast cells, using a clone overproducing Rad4 with a hemagglutinin-tag at its C terminus. tRad4.Rad23 complex purified by both conventional and immuno-affinity chromatography complements the in vitro repair defect of rad4 and rad23 mutant extracts, demonstrating that these proteins are functional in NER. Using electrophoretic mobility shift assays, we show preferential binding of the tRad4.Rad23 complex to damaged DNA in vitro. UV-irradiated, as well as N-acetoxy-2-(acetylamino)fluorene-treated DNA, is efficiently bound by the protein complex. These data suggest that Rad4.Rad23 interacts with DNA damage during NER and may play a role in recognition of the damage.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The Saccharomyces cerevisiae ubiquitin-conjugating enzyme (UBC) Rad6 is required for several functions, including the repair of UV damaged DNA, damage-induced mutagenesis, sporulation, and the degradation of cellular proteins that possess destabilizing N-terminal residues. Rad6 mediates its role in N-end rule-dependent protein degradation via interaction with the ubiquitin-protein ligase Ubr1 and in DNA repair via interactions with the DNA binding protein Rad18. We report here the crystal structure of Rad6 refined at 2.6 A resolution to an R factor of 21.3%. The protein adopts an alpha/beta fold that is very similar to other UBC structures. An apparent difference at the functionally important first helix, however, has prompted a reassessment of previously reported structures. The active site cysteine lies in a cleft formed by a coil region that includes the 310 helix and a loop that is in different conformations for the three molecules in the asymmetric unit. Residues important for Rad6 interaction with Ubr1 and Rad18 are on the opposite side of the structure from the active site, indicating that this part of the UBC surface participates in protein-protein interactions that define Rad6 substrate specificity.  相似文献   

15.
16.
The Vpr protein encoded by human immunodeficiency virus type 1 (HIV-1) is important for growth of virus in macrophages and prevents infected cells from passing into mitosis (G2 arrest). The cellular target for these functions is not known, but Vpr of HIV-1 and the related Vpr from simian immunodeficiency virus of sooty mangabeys (SIV(SM)) bind the DNA repair enzyme UNG, while the Vpx protein of SIV(SM) does not. Nonetheless, a mutational analysis of Vpr showed that binding to UNG is neither necessary nor sufficient for the effect of Vpr on the cell cycle.  相似文献   

17.
18.
19.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by skeletal abnormalities, pancytopenia and a marked predisposition to cancer. FA cells exhibit chromosomal instability and hypersensitivity towards oxygen and cross-linking agents such as diepoxybutane and mitomycin C. An increased level of reactive oxygen intermediates and an elevation of 8-oxoguanine in FA cells point to a defective oxygen metabolism in FA cells. We investigated the repair activity of oxidatively damaged DNA in lymphoblastoid cells from FA patients of complementation groups A-E. The repair activity for oxidatively damaged DNA was significantly reduced in lymphoblastoid cell lines of complementation groups B-E. Complementation of the FA-C cell line with the wild type FA-C gene restored the repair activity to normal. This indicates that the FA-C protein participates in the repair of oxidatively damaged DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号