首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
The electronic structure of the strontium aluminate (SrAl2O4:Eu2+) materials was studied with a combined experimental and theoretical approach. The UV-VUV synchrotron radiation was applied in the experimental study while the electronic structure of the non-optimized and optimized crystal structure were investigated theoretically by using the density functional theory. The structure of the valence and conduction bands as well as the band gap energy of the material together with the position of the Eu2+ 4f7 8S7/2 ground state were calculated. The calculated band gap energy (6.4 eV) agreed well with the experimental value of 6.6 eV. The valence band consisted mainly of oxygen states whereas the bottom of the conduction band of strontium states. In agreement with the experimental results, the calculated 4f7 8S7/2 ground state of Eu2+ lies in the energy gap of the host. The position of the 4f7 ground state depended on the Coulomb repulsion strength. The position of the 4f7 ground state with respect to the valence and conduction bands was discussed using theoretical and experimental evidence available.  相似文献   

2.
The NaYF4:yb3+,Tb3+ (Xyb: 0.20, XTb: 0.04) materials were prepared using the co-precipitation method, lne as-preparea material was washed either with or without water in addition to ethanol and thereafter annealed for 5 h at 500℃. This resulted in materials with moderate or very high up-conversion luminescence intensity, respectively. The structural study carried out with X-ray powder diffraction revealed microstrains in the rare earth (R) sublattice that were relaxed for the material with very high up-conversion intensity thus decreasing energy losses. The local structural details were investigated with R LⅢ and Y K edge ex- tended X-ray absorption fine structure (EXAFS) using synchrotron radiation. Around 10 tool.% of the Yb3+ ions were found to occupy the Na site in the material with very high up-conversion intensity. These Yb species formed clusters with the Tb3+ ions occupying the regular Na/R sites. Such clustering enhanced the energy transfer between Yb3+ and Tb3+ thus intensifying the up-conversion emission.  相似文献   

3.
Long afterglow photoluminescent materials Sr2MgSi2O7 dopeo With Eu^2 ,Dy^3 were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8h.  相似文献   

4.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu^2+,Dy^3+was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the lu-minescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+and polypropylene. The range of its excitation wavelength was located between 250-450 nm;therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu^2+ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m^2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay charac-teristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu^2+,Dy^3+.  相似文献   

5.
Rare earth strontium aluminate luminous fiber is a novel functional fiber. In order to investigate the influence of Al/Sr ratio on luminescence properties of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers, several kinds of rare earth strontium aluminate luminous fibers were prepared by using rare-earth strontium aluminate as the rare-earth luminescent material and fiber-forming polymers such as polymer polyethylene terephthalate(PET) as a matrix and combining them with functional additives. X-ray diffraction(XRD), fluorescence spectrophotometer, and afterglow brightness tester as well as microcomputer thermo-luminescence dosimeters were used to characterize the resulting samples. Results from XRD demonstrated that the phase of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers were different from one another as the Al/Sr ratio changed. Emission spectra of the samples with different Al/Sr ratios showed that emission intensity increased with the decrease of A1/Sr ratio at first then increased when it was over 2/1. From afterglow decay results, it could be found that Sr-rich sample showed lower luminance and shorter persistent time.  相似文献   

6.
Cerium-doped Sr3(A11-x,Six)O4-xNxF oxynitride phosphors with different x values were synthesized by solid-state reaction. The structure and optical properties of these phosphors were investigated by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and photoluminescence (PL) spectra. The XRD results showed that SiN substitution for Al-O) did not change the structure of Sr3A104F host and there was no impurity for x〈0.6. With the increasing ofx values, the absorption of phosphors at the blue region was enhanced and the emitting band varied from 519 to 529 nm under the 460 nm blue light excitation. The red shift of the emission band was associated with an increase in the crystal-field splitting and the covalence, which arose from the incorporation of N. More- over, the incorporation of N also improved the thermal quenching properties and the external quantum efficiency with a maximum value up to 43.3%, indicating that this phosphor is a promising candidate for white LEDs application.  相似文献   

7.
Europium doped MBrCl (M=Ca, Sr, and Ba) phosphors were prepared by solid state reaction in reductive atmosphere. Photolu-minescence (PL), photostimulated luminescence (PSL) after X-ray irradiation and optical absorption studies of MBrCl:Eu2+ (M=Ca, Sr, and Ba) revealed that: (1) blue light emission, under the excitation of 300 nm, was observed in all these phosphors; (2) the shape of the emission spectra in CaBrCl:Eu2+ could be changed by varying the bromine/chlorine ratio during synthesis, while that in SrBrCl:Eu2+ and BaBrCl:Eu2+ showed no change; and (3) PSL was observed in SrBrCl:Eu2+ and BaBrCI:Eu2+ after X-ray irradiation. Difference absorption spectrum (DAS) in SrBrCl:Eu2+ showed two broad bands centered at about 470 and 570 nm, and DAS in BaBrCI:Eu2+ showed two bands at about 550 and 675 nm, respectively. This enabled the use of He-Ne laser (633 nm) or even semiconductor light-emitting diodes (LED) instead of gas lasers for photostimulation.  相似文献   

8.
Phosphors with controlled emission spectra are of great interest due to their application for white light emitting diodes.Herein, a new class of Sr3Y2(SiO3)6:Ce3+,Tb3+ phosphors were synthesized by a facile sol-gel combustion method. The phase structure,morphology, and luminescence properties of the phosphors were characterized by using powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and photoluminescence excitation and emission spectra,respectively. The results on luminescence properties indicated that co-doped Ce3+ ions served as UV-light sensitizers with excitation energy partially transferred to Tb3+ ions, leading to green emission from Tb3+. Particularly, the corresponding emitting colors of the phosphors could be well-tuned from deep blue(0.16, 0.05) to green region(0.25, 0.45) by adjusting the molar ratio of Ce3+/Tb3+.  相似文献   

9.
10.
The crystal and electronic structure of the Eu2+ doped and defect containing Sr2MgSi2O7 persistent luminescence material were studied using the density functional theory(DFT) .The defects may act as energy storage or even luminescence quenching centres in these materials,however their role is very difficult to confirm experimentally.The probability of vacancy formation was studied using the total en-ergy of the defect containing host.Significant structural modifications in the environment of the isolated de...  相似文献   

11.
New blue luminescence glass-ceramic samples were prepared in air by annealing of the Eu^3+-doped Li2O-BaO-B2O3 glass. The as-made glass samples only showed the sharp emission peaks assigned to the transitions of 5^D0-7^Fj (J=0, 1, 2, 3, 4) of Eu^3+ ions. The glass-ceramic samples gave a strong and broad emission band peaking at about 382 nm ascribed to the 5d-4f transition of Eu^2+ ions. The optical properties such as excitation and emission spectra, and the decay time of the Eu^2+ ions were investigated in the glasses or the glass-ceramics samples. The X-ray diffraction pattern showed that LiBan9O15 might be demonstrated to be the crystallites in the glass-ceramic, which contributed to the blue luminescence. SEM micrograph was investigated on the glass-ceramic samples obtained by crystallization of the glass matrix resulting in a mixture of poly-crystals.  相似文献   

12.
13.
SrB6010:Tb phosphor was synthesized by high-temperature solid state reaction. The influences of Ce or Li as a co-dopant, Tb concentration and irradiation dose exposure on TL of SrB6010 : Tb were investigated. Results show that Ce or Li as a co-dopant can not improve the sensitivity of SrB6010:Tb phosphor. TL response depends on Tb concentration and 0.02 is the optimum in the concentration range from 0.01 to 0.10. Using the optimum Tb concentration, we calculated the kinetic parameters of SrB6010:Tb employing the peak shape method, and suggested the phosphor obeying the second order kinetics. TL emission intensity is linearly dependent on the irradiation dose within the dose range of 50 - 200 Gy. The characteristic Tb^3+ ion emission was observed in TL emission spectrum.  相似文献   

14.
Ce^3+-activated SrGa2O4 phosphor was synthesized by a method of citric gel,wherein citric acid served as a chelate agent,and the as-synthesized powder was calcined in a slightly reduced ambient.The crystallization characteristics of the sample varied with the calcining temperature.Compared with the phosphor prepared by the solid-state reaction,the phosphor synthesized by citric gel was calcined at a relatively lower temperature.Consequently,the volatilization of Ga2O3 during high-temperature calcining process was avoided.The typical double-peak emission of Ce^3+ originated from 2D(5d)→4F5/2(4f),and 2D(5d)→4F7/2(4f)was observed,and the intrinsic emission of SrGa2O4 host was much restricted.The emission intensity varied with the calcining temperature because the different crystallinity and the optimal concentration of Ce-dopant was determined at 3%.  相似文献   

15.
硅酸镁锶(Sr2MgSi2O7)作为目前常用的一种长余辉发光材料基质,性能稳定,耐酸碱性能良好。本文介绍了长余辉发光材料的发光原理,综述了近年来Sr2MgSi2O7长余辉发光材料的主要制备方法以及稀土掺杂Sr2MgSi2O7材料的研究进展,并对该材料的发展做出了展望。制备Sr2MgSi2O7长余辉发光材料的方法主要包括高温固相法,溶胶-凝胶法,化学沉淀法和燃烧合成法,其中最常用的为高温固相法。通过掺杂稀土离子可以形成具有不同发光特性的长余辉发光材料。稀土掺杂Sr2MgSi2O7材料作为一种储能、节能的长余辉发光材料,展现出了广阔的发展和应用前景。  相似文献   

16.
Phosphor SrGa2S4Eu2 was synthesized with a high temperature solid state reaction.Its absorption spectrum, photoluminescence spectra, and fluorescence lifetime were studied in details.The excitation spectrum extended from UV to visible light region, and matched the emission of GaN chip.(Sr1-xEux)Ga2S4 emits strong green light and the concentration quenching did not occur; while the thermal quenching was evident.The emission peak shifted to long wavelength with increasing Eu2 concentration because of the changing of the crystal field strength.The lifetime of Eu2 ion was in the order of microsecond, which was reasonable for d→f transition.The electroluminescence spectrum of as-fabricated PC-LED at IF=20 mA was measured and most of the blue light of blue-LED chip at 460 nm was absorbed by the phosphor and simultaneously down-converted into an intensive green light at 540 nm.The color coordinate was (0.32, 0.63).SrGa2S4Eu2 was a promising phosphor for GaN-based green LEDs.  相似文献   

17.
Amorphous phosphor 1.4YeO3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.e., below 650℃), which is much lower than that for the preparation of polycrystalline Y3Al5O12:Tb^3+ (above 1400℃). The amorphous phosphor prepared in the optimized conditions showed a bright green-yellowish luminescence, the intensity of which was comparable with that of polycrystalline sample and the emissions of which were assigned to 5D4 → 7Fj transitions of Tb^3+. Besides the emissions of Tb^3+, the amorphous samples prepared at temperatures below 500 ℃ presented a weak blue emission band around 420 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号