首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Although ACE inhibitors can protect myocardium against ischemia/reperfusion injury, the mechanisms of this effect have not yet been characterized at the cellular level. The present study was designed to examine whether an ACE inhibitor, cilazaprilat, directly protects cardiac myocytes against hypoxia/reoxygenation (H/R) injury. METHODS AND RESULTS: Neonatal rat cardiac myocytes in primary culture were exposed to hypoxia for 5.5 hours and subsequently reoxygenated for 1 hour. Myocyte injury was determined by the release of creatine kinase (CK). Both cilazaprilat and bradykinin significantly inhibited CK release after H/R in a dose-dependent fashion and preserved myocyte ATP content during H/R, whereas CV-11974, an angiotensin II receptor antagonist, and angiotensin II did not. The protective effect of cilazaprilat was significantly inhibited by Hoe 140 (a bradykinin B2 receptor antagonist), NG-monomethyl-L-arginine monoacetate (L-NMMA) (an NO synthase inhibitor), and methylene blue (a soluble guanylate cyclase inhibitor) but not by staurosporine (a protein kinase C inhibitor), aminoguanidine (an inhibitor of inducible NO synthase), or indomethacin (a cyclooxygenase inhibitor). Cilazaprilat significantly enhanced bradykinin production in the culture media of myocytes after 5.5 hours of hypoxia but not in that of nonmyocytes. In addition, cilazaprilat markedly enhanced the cGMP content in myocytes during hypoxia, and this augmentation in cGMP could be blunted by L-NMMA and methylene blue but not by aminoguanidine. CONCLUSIONS: The present study demonstrates that cilazaprilat can directly protect myocytes against H/R injury, primarily as a result of an accumulation of bradykinin and the attendant production of NO induced by constitutive NO synthase in hypoxic myocytes in an autocrine/paracrine fashion. NO modulates guanylate cyclase and cGMP synthesis in myocytes, which may contribute to the preservation of energy metabolism and cardioprotection against H/R injury.  相似文献   

2.
OBJECTIVES: This study was undertaken to examine whether a dihydropyridine Ca channel blocker, benidipine, increases cardiac NO levels, and thus coronary blood flow (CBF) in ischemic hearts. BACKGROUND: Benidipine protects endothelial cells against ischemia and reperfusion injury in hearts. METHODS AND RESULTS: In open chest dogs, coronary perfusion pressure (CPP) of the left anterior descending coronary artery was reduced so that CBF decreased to one-third of the control CBF, and thereafter CPP was maintained constant (103+/-8 to 42+/-1 mmHg). Both fractional shortening (FS: 6.1+/-1.0%) and lactate extraction ratio (LER: -41+/-4%) decreased. Ten minutes after the onset of an intracoronary infusion of benidipine (100 ng/kg/min), CBF increased from 32+/-1 to 48+/-4 ml/100g/ min during 20 min without changing CPP (42+/-2 mmHg). Both FS (10.7+/-1.2%) and LER (-16+/-4%) also increased. Benidipine increased cardiac NO levels (11+/-2 to 17+/-3 nmol/ml). The increases in CBF, FS, LER and cardiac NO levels due to benidipine were blunted by L-NAME. Benidipine increased cyclic GMP contents of the coronary artery of ischemic myocardium (139+/-13 to 208+/-15 fmol/mg protein), which was blunted by L-NAME. CONCLUSION: Thus, we conclude that benidipine mediates coronary vasodilation and improves myocardial ischemia through NO-cyclic GMP-dependent mechanisms.  相似文献   

3.
Increasing evidence suggests that angiotensin-converting enzyme (ACE) inhibitors can increase vascular nitric oxide (NO) production. Recent studies have found that combined inhibition of ACE and neutral endopeptidase (NEP) may have a greater beneficial effect in the treatment of heart failure than inhibition of ACE alone. Amlodipine, a calcium channel antagonist, has also been reported to have a favorable effect in the treatment of patients with cardiac dysfunction. The purpose of this study was to determine whether and the extent to which all of these agents used in the treatment of heart failure stimulate vascular NO production. Heart failure was induced by rapid ventricular pacing in conscious dogs. Coronary microvessels were isolated from normal and failing dog hearts. Nitrite, the stable metabolite of NO, was measured by the Griess reaction. ACE and NEP inhibitors and amlodipine significantly increased nitrite production from coronary microvessels in both normal and failing dog hearts. However, nitrite release was reduced after heart failure. For instance, the highest concentration of enalaprilat, thiorphan, and amlodipine increased nitrite release from 85 +/- 4 to 156 +/- 9, 82 +/- 7 to 139 +/- 8, and 74 +/- 4 to 134 +/-10 pmol/mg (all *p <.01 versus control), respectively, in normal dog hearts. Nitrite release in response to the highest concentration of these two inhibitors and amlodipine was reduced by 41% and 31% and 32% (all #p <.01 versus normal), respectively, in microvessels after heart failure. The increase in nitrite induced by either ACE or NEP inhibitors or amlodipine was entirely abolished by Nw-nitro-L-arginine methyl ester, HOE 140 (a B2-kinin receptor antagonist), and dichloroisocoumarin (a serine protease inhibitor) in both groups. Our results indicate that: 1) there is an impaired endothelial NO production after pacing-induced heart failure; 2) both ACE and NEP are largely responsible for the metabolism of kinins and modulate canine coronary NO production in normal and failing heart; and 3) amlodipine releases NO even after heart failure and this may be partly responsible for the favorable effect of amlodipine in the treatment of heart failure. Thus, the restoration of reduced coronary vascular NO production may contribute to the beneficial effects of these agents in the treatment of heart failure.  相似文献   

4.
Left ventricular remodeling is a dynamic process that occurs in reaction to an insult to the myocardium. The response to either loss of cells, as may occur following myocardial infarction, or to hemodynamic overload, as may occur in aortic stenosis, is an attempt to maintain cardiac output and normalize wall tension. This is accomplished through the activation of the renin-angiotensin system and hypertrophy of noninfarcted segments of the myocardium. in the case of moderate or large infarctions these mechanisms fail to normalize wall stress. The stimulus to further remodeling remains, viable myocytes hypertrophy (with greater increases in cell length than width), the mass-to-volume ratio increases, and an exponential increase in wall stress results. This increase in myocyte tension has been associated with premature myocyte cell death. Thus, a vicious cycle is established wherein overstretch of the myocardium while sustaining cardiac output leads to progressive myocyte loss and left ventricular dilation. The renin-angiotensin system plays an integral role in this process. Its inhibition by angiotensin-converting enzyme (ACE) inhibitors both chronically and immediately after myocardial infarction has been shown to decrease left ventricular volumes and reduce mortality. Controversy exists regarding the mechanism through which ACE inhibitors exert their effects. ACE inhibitors reduce afterload/preload, circulating angiotensin II levels, and raise circulating levels of bradykinin. It is not yet clear which mechanism is responsible for the greatest impact on left ventricular dilation and mortality. inhibition of the renin-angiotensin system is clearly beneficial to cardiac performance as well as morbidity and mortality when myocardium is lost and heart failure ensues. Specific modes of action require further definition, including local and systemic effects. Possible benefits of angiotensin receptor blockade versus augmentation of bradykinin requires definition, setting the stage for further study, while the beneficial therapeutic use of these agents continues.  相似文献   

5.
OBJECTIVE: The aims were to validate the use of a direct reading NO electrode, to compare the effects of diverse acting drugs on altering coronary flow (CF) and NO release, and to examine the effects of altered perfusion pressure on flow-induced changes in NO concentration [NO] in the hemoglobin free effluent of guinea pig isolated hearts. METHODS: Hearts were isolated and perfused initially at a constant perfusion pressure (55 mmHg) with a modified Krebs-Ringer's solution equilibrated with 97% O2 and 3% CO2 at 37 degrees C. Heart rate, left ventricular pressure, CF, and effluent pH, pCO2, pO2, and NO generated current were monitored continuously on-line. Effluent was sampled for L-citrulline. Percent O2 extraction and O2 consumption were calculated. [NO] was quantitated with a sensitive amperometric sensor (sensitivity > or = 1 nmol/l approximately 3 pA) and a selective gas permeable membrane. RESULTS: The electrode was not sensitive to changes in solution pO2, flow, or pressure. The electrode was sensitive to pCO2 (-0.50 nmol/l/mmHg) and temperature (+24.5 nmol/l/degree C), so coronary effluent pCO2 was measured to compensate for a small decrease in pCO2 that occurred with an increase in coronary flow, and effluent temperature was rigidly controlled. Serotonin, bradykinin, and nitroprusside increased NO release along with CF, whereas nifedipine, butanedione monoxime, zaprinast, and bimakalim comparably increased CF but did not increase [NO] or NO release. Increases in CF (ml/g/min) and NO release (pmol/g/min), respectively, were 5.0 +/- 1 and 100 +/- 17 for 1 mumol/l serotonin, 7.5 +/- 1 and 148 +/- 18 for 100 nmol/l bradykinin, and 7.8 +/- 1 and 173 +/- 28 for 100 mumol/l nitroprusside. The increases in effluent NO by bradykinin were proportional to the increases in L-citrulline. Tetraethylammonium decreased CF, but did not change NO release, indomethacin changed neither CF nor NO release, and NG-nitro-L-arginine methyl ester (L-NAME) reduced CF by 2.6 +/- 1 ml/g/min and NO release by 25 +/- 8 pmol/g/min. An increase of CF of 8.0 +/- 0.3 ml/g/min, produced by increasing perfusion pressure from 25 to 90 mmHg, increased [NO] by 30 +/- 4 nmol/l; L-NAME but did not reduce the pressure-induced increase in CF, but reduced the increase in [NO] to 10 +/- 5 nmol/l. CONCLUSIONS: This study demonstrates in intact hearts real-time release of NO by several vasodilator drugs and by pressure-induced increases in flow (shear stress) and attenuation of these effects by L-NAME.  相似文献   

6.
This study determined the changes in NO production from the coronary circulation of the conscious dog during exercise. The role of endogenous NO as it relates to coronary flow, myocardial work, and metabolism was also studied. Mongrel dogs were chronically instrumented for measurements of coronary blood flow (CBF), ventricular and aortic pressure, and ventricular diameter, with catheters in the aorta and coronary sinus. Acute exercise (5 minutes at 3.6, 5.9, and 9.1 mph) was performed, and hemodynamic measurements and blood samples were taken at each exercise level. Nitro-L-arginine (NLA, 35 mg/kg IV) was given to block NO synthesis, and the exercise was repeated. Blood samples were analyzed for oxygen, plasma nitrate/nitrite (an index of NO), lactate, glucose, and free fatty acid (FFA) levels. Acute exercise caused significant elevations in NO production by the coronary circulation (46 +/- 23, 129 +/- 44, and 63 +/- 32 nmol/min at each speed respectively, P < .05). After NLA, there was no measurable NO production at rest or during exercise. Blockade of NO synthesis resulted in elevations in myocardial oxygen consumption and reductions in myocardial FFA consumption for comparable levels of CBF and cardiac work. The metabolic changes after NLA occurred in the absence of alterations in myocardial lactate or glucose consumptions. NO production by the coronary circulation is increased with exercise and blocked by NLA. The absence of NO in the coronary circulation during exercise does not affect levels of CBF, because it shifts the relationship between cardiac work and myocardial oxygen consumption, suggesting that endogenous NO modulates myocardial metabolism.  相似文献   

7.
Early changes in collateral blood flow after acute coronary occlusion may be critical for survival of ischemic myocardium. We used 15-mum radioactive microspheres to study myocardial blood flow in thoracotomized dogs 10 minutes and 24 hours after occlusion of the left anterior descending coronary artery (LAD). The ischemic area was delineated by dye injected into the distal artery, and indentification of potentially ischemic samples was confirmed by a newly developed technique in which microspheres were excluded from the normally perfused LAD. Layers were separated into necrotic or normal as defined by gross inspection and confirmed by histological examination and creatine phosphokinase assay. Infarction always involved endocardial layers and extended toward the epicardium. Average myocardial blood flow in 48 necrotic samples from 16 dogs either remained low (less than 0.05 ml/min g-1) or declined, falling from 0.11 +/-0.02(SE) at 10 minutes to 0.05 +/-0.01 ml/min g-1 at 24 hours (P less than 0.001). In contrast, in the 32 normal-appearing samples which were ischemic at 10 minutes, flow increased from 0.24 +/-0.03 to 0.39 +/-0.04 ml/min g-1 (P less than 0.001). Flow in control myocardium was 1.43 +/-0.12 and 1.04 +/-0.07 ml/min g-1, respectively. Peripheral mean coronary arterial pressure increased from 26 +/- 3 to 35 +/- 3 mm Hg, largely because of enlargement of collateral vessels; collateral conductance calculated from retrograde flow in 14 dogs increased from 0.023 +/- 0.005 after occlusion to 0.051 +/- 0.009 ml/min mm Hg-1 24 hours later (P less than 0.001). Thus, coronary collateral blood flow is redistributed from necrotic endocardial layers to surviving epicardial ones. In combination with a developing collateral supply this process may be essential for sparing myocardium after coronary occlusion.  相似文献   

8.
OBJECTIVE: Polymorphonuclear leukocytes (PMN), retained in the microvascular bed, can contribute to postischemic myocardial reperfusion injury. Since a beneficial effect of ACE-inhibition on reperfusion injury has been reported, we investigated the impact of cilazaprilat on PMN dependent reperfusion injury in isolated guinea pig hearts. METHODS: Hearts (n = 5 per group) were subjected to 15 min of ischemia. Immediately thereafter, a bolus of PMN was injected into the coronary system. External heart work (EHW) and total cardiac nitric oxide release were measured. For microscopic evaluation, hearts received rhodamine 6G labelled PMN after ischemia, were arrested 5 min later and further perfused with FITC dextran (0.1%). Localization of retained PMN was assessed by fluorescence microscopy. Leukocyte activation was studied by FACS analysis of the adhesion molecule CD11b before and after coronary passage of the PMN. The ACE-inhibitor cilazaprilat (Cila, 2 microM) and the NO-synthase inhibitor nitro-L-arginine (NOLAG, 10 microM) were used to modulate nitric oxide formation of the heart. RESULTS: Postischemic EHW recovered to 67 +/- 5% (controls) and 64 +/- 6% (Cila) of the preischemic value. Addition of PMN severely depressed recovery of EHW (39 +/- 2%) and NO release (39 +/- 6% of the preischemic value). Simultaneously, ischemia led to a substantial increase in postcapillary PMN adhesion (from 21 +/- 5 to 172 +/- 27 PMN/mm2 surface) and CD11b-expression of the recovered PMN (3-fold). Cila attenuated postischemic PMN adhesion (83 +/- 52 PMN/mm2) and activation of PMN, whereas it improved recovery of work performance (64 +/- 4%) and NO release (65 +/- 4%) in the presence of PMN. Conversely, NOLAG increased PMN adhesion (284 +/- 40 PMN/mm2) and myocardial injury. We conclude that ACE-inhibition prevents leukocyte dependent reperfusion injury mainly by inhibition of postcapillary leukocyte adhesion. The effect may be mediated by NO, given the proadhesive effect of NOLAG.  相似文献   

9.
Acadesine, an adenosine-regulating agent, has been shown to increase coronary flow and exert cardioprotective effects in acutely ischemic myocardium, but a beneficial effect on coronary collateral flow during exercise has not been demonstrated. We examined the effect of acadesine, 100 micromol/min, i.v., on myocardial blood flow during treadmill exercise in six normal dogs and seven dogs with moderately well-developed coronary collateral vessels. Collateral vessel growth was produced with 2-min intermittent occlusions of the left circumflex coronary artery followed by permanent occlusion. During resting conditions, myocardial blood flow in the collateral zone was not significantly less than in the normal zone, but during exercise, blood flow increased by only 79 +/- 21% (from 0.98 +/- 0.29 ml/min/g to 1.64 +/- 0.19 ml/min/g; p < 0.05) in the collateral zone as compared with 118 +/- 32% (from 1.09 +/- 0.28 ml/min/g to 2.14 +/- 0.2 ml/min/g; p < 0.01) in the normal zone. During exercise, acadesine further increased mean blood flow in the collateral-dependent region by 24 +/- 5% (to 2.04 +/- 0.26 ml/min/g; p < 0.05) with no change in the transmural distribution of perfusion. The increase in collateral zone blood flow in response to acadesine resulted from a decrease in both transcollateral resistance from 25.1 +/- 2.7 mm Hg/min/g/ml to 18.8 +/- 8 mm Hg/min/g/ml (p < 0.05) and small-vessel resistance in the collateral-dependent myocardium from 45.3 +/- 6.6 mm Hg/min/g/ml to 36.4 +/- 5.8 mm Hg/min/g/ml (p < 0.05). Acadesine also significantly increased normal-zone flow in the collateralized dogs (to 2.62 +/- 0.33 ml/min/g; p < 0.05). In contrast, acadesine had no effect on coronary blood flow in normal dogs. In dogs with moderately well-developed collateral vessels, acadesine increased blood flow in both the collateral-dependent and normal myocardial zones during exercise. In contrast, acadesine did not increase blood flow in normal dogs. These findings suggest that adenosine metabolism is altered not only in the collateral-dependent region but also in the normal region of hearts with a coronary artery occlusion.  相似文献   

10.
OBJECTIVES: This study sought to evaluate whether regional sympathetic myocardial denervation in diabetes is associated with abnormal myocardial blood flow under rest and adenosine-stimulated conditions. BACKGROUND: Diabetic autonomic neuropathy (DAN) has been invoked as a cause of unexplained sudden cardiac death, potentially by altering electrical stability or impairing myocardial blood flow, or both. The effects of denervation on cardiac blood flow in diabetes are unknown. METHODS: We studied 14 diabetic subjects (7 without DAN, 7 with advanced DAN) and 13 nondiabetic control subjects without known coronary artery disease. Positron emission tomography using carbon-11 hydroxyephedrine was used to characterize left ventricular cardiac sympathetic innervation and nitrogen-13 ammonia to measure myocardial blood flow at rest and after intravenous administration of adenosine (140 microg/kg body weight per min). RESULTS: Persistent sympathetic left ventricular proximal wall innervation was observed, even in advanced neuropathy. Rest myocardial blood flow was higher in the neuropathic subjects (109 +/- 29 ml/100 g per min) than in either the nondiabetic (69 +/- 8 ml/100 g per min, p < 0.01) or the nonneuropathic diabetic subjects (79 +/- 23 ml/100 g per min, p < 0.05). During adenosine infusion, global left ventricular myocardial blood flow was significantly less in the neuropathic subjects (204 +/- 73 ml/100 g per min) than in the nonneuropathic diabetic group (324 +/- 135 ml/100 g per min, p < 0.05). Coronary flow reserve was also decreased in the neuropathic subjects, who achieved only 46% (p < 0.01) and 44% (p < 0.01) of the values measured in nondiabetic and nonneuropathic diabetic subjects, respectively. Assessment of the myocardial innervation/blood flow relation during adenosine infusion showed that myocardial blood flow in neuropathic subjects was virtually identical to that in nonneuropathic diabetic subjects in the distal denervated myocardium but was 43% (p < 0.05) lower than that in the nonneuropathic diabetic subjects in the proximal innervated segments. CONCLUSIONS: DAN is associated with altered myocardial blood flow, with regions of persistent sympathetic innervation exhibiting the greatest deficits of vasodilator reserve. Future studies are required to evaluate the etiology of these abnormalities and to evaluate the contribution of the persistent islands of innervation to sudden cardiac death complicating diabetes.  相似文献   

11.
OBJECTIVE: The long-term effects and mechanisms of early started angiotensin converting enzyme (ACE) inhibition post myocardial infarction (MI) are not well understood. Chronic effects of early ACE inhibition on hemodynamics, left ventricular diastolic wall stress and remodeling were, therefore, compared to that of angiotensin AT1-receptor subtype blockade in rats with experimental myocardial infarction. The contribution of bradykinin potentiation to both ACE inhibitor and angiotensin AT1-receptor subtype blockade was assessed by cotreatment of rats with a bradykinin B2-receptor antagonist. METHODS: MI was produced by coronary artery ligation in adult male Wistar rats. The ACE inhibitor, quinapril (6 mg/kg per day), or the angiotensin AT1-receptor subtype blocker, losartan (10 mg/kg per day), administered by gavage, and the bradykinin B2-receptor antagonist, Hoe-140 (500 micrograms/kg per day s.c.), administered either alone or in combination with quinapril or losartan, were started 30 min after MI and continued for eight weeks. RESULTS: Quinapril and losartan reduced left ventricular end-diastolic pressure and global left ventricular diastolic wall stress only in rats with large MI. Pressure volume curves showed a rightward shift in proportion to MI size that was not prevented by quinapril or losartan treatment. Only the ACE inhibitor reduced left ventricular weight and this effect was prevented by cotreatment with the bradykinin antagonist. Baseline and peak cardiac index and stroke volume index, as determined using an electromagnetic flowmeter before and after an acute intravenous volume load, were restored by quinapril, whereas losartan had no effects. CONCLUSION: Treatments starting 30 min after coronary artery ligation, with either quinapril or losartan, reduced preload only in rats with large MI. Despite this unloading of the heart, structural dilatation was not prevented by this early treatment. Only quinapril improved cardiac performance and reduced left ventricular weight and this effect was abolished by cotreatment with Hoe-140, suggesting an angiotensin II blockade-independent, but bradykinin potentiation-dependent, mechanism.  相似文献   

12.
The ability of external counterpulsation (Cardiassist) and intra-aortic balloon pumping (AVCO) to influence collateral coronary blood flow in ischemic myocardium was measured in anesthetized dogs. Cardiac output and heart rate (atrial pacing) were held constant on right-heart bypass. Both external counterpulsation and balloon pumping augmented peak diastolic pressure (30 mmHg and 38 mmHg, respectively), while mean aortic pressure, peak left-ventricular pressure, left-ventricular end-diastolic pressure, maximum left-ventricular dp/dt, hematocrit, and osmolality remained unchanged. Regional coronary blood flow was measured using 9-mum radioactive microspheres. External counterpulsation and balloon pumping begun immediately following ligation of the left-anterior descending coronary artery significantly increased collateral coronary blood flow 29 +/- 7.5% (SE, P is less than .01) and 20 +/- 8% (P is less than .05), respectively, to ischemic myocardium. This redistribution of collateral coronary blood flow produced by both methods of counterpulsation was primarily to the subepicardial region of the ischemic myocardium. The mechanism responsible for the measured increases in collateral coronary blood flow appears most likely to be an increased pressure gradient produced by diastolic augmentation.  相似文献   

13.
BACKGROUND: Intraaortic balloon pumping (IABP) and left ventricular assist device (LVAD) are used for left ventricular support when low cardiac output occurs after a coronary bypass operation for serious coronary artery disease. There are hemodynamic differences in blood flow in various kinds of coronary artery bypass grafts, caused by their inherent physiologic characteristics. The hemodynamic effects of left ventricular assistance with IABP and LVAD on blood flow through various coronary artery bypass grafts were investigated. METHODS: An ascending aorta-coronary bypass graft (ACB), an internal thoracic artery, and a descending aorta-coronary bypass graft were anastomosed to the left anterior descending coronary artery in a canine model. In this experimental model, the blood flow to the same coronary bed in the three types of grafts could be evaluated. Blood flow in the left anterior descending coronary artery through the three types of coronary bypass grafts was studied in this model during or in the absence of ventricular assistance. RESULTS: In the control study, the systolic blood flow did not differ among the three types of grafts, but the diastolic flow decreased in the following order: with the ACB, the internal thoracic artery, and the descending aorta-coronary bypass graft. The systolic flow during IABP and LVAD was similar to the control flows. Use of IABP increased the diastolic flow by 75.3%+/-12.4% of the control value in the ACB, 37.9%+/-25.0% in the internal thoracic artery, and 21.2%+/-11.4% in the descending aorta-coronary bypass graft. The LVAD increased the diastolic flow by 97.7%+/-18.7% of the control value in the ACB, 64.5%+/-25.7% in the internal thoracic artery, and 63.0%+/-27.9% in the descending aorta-coronary bypass graft. The diastolic blood flows in the left anterior descending coronary artery and the three types of grafts were significantly greater with IABP than the control values, and significantly greater with LVAD than with IABP and the control values. The degrees of increase of diastolic flows in the left anterior descending coronary artery and the ACB with IABP and LVAD were significantly greater than in the arterial grafts (p < 0.01). CONCLUSIONS: The diastolic flows in the internal thoracic artery and descending aorta-coronary bypass graft increased less than in the native left anterior descending coronary artery and ACB during left ventricular assistance, particularly with IABP. It is important for the selection of tactics for the management of catastrophic status after coronary bypass grafting to consider the hemodynamic characteristics of the graft.  相似文献   

14.
1. The functional role of the nitric oxide (NO)/guanosine 3':5'-cyclic monophosphate (cyclic GMP) pathway in experimental myocardial ischaemia and reperfusion was studied in rat isolated hearts. 2. Rat isolated hearts were perfused at constant pressure with Krebs-Henseleit buffer for 25 min (baseline), then made ischaemic by reducing coronary flow to 0.2 ml min(-1) for 25 or 40 min, and reperfused at constant pressure for 25 min. Drugs inhibiting or stimulating the NO/cyclic GMP pathway were infused during the ischaemic phase only. Ischaemic contracture, myocardial cyclic GMP and cyclic AMP levels during ischaemia, and recovery of reperfusion mechanical function were monitored. 3. At baseline, heart rate was 287+/-12 beats min(-1), coronary flow was 12.8+/-0.6 ml min(-1), left ventricular developed pressure (LVDevP) was 105+/-4 mmHg and left ventricular end-diastolic pressure 4.6+/-0.2 mmHg in vehicle-treated hearts (control; n=12). Baseline values were similar in all treatment groups (P>0.05). 4. In normoxic perfused hearts, 1 microM N(G)-nitro-L-arginine (L-NOARG) significantly reduced coronary flow from 13.5+/-0.2 to 12.1+/-0.1 ml min(-1) (10%) and LVDevP from 97+/-1 to 92+/-1 mmHg (5%; P<0.05, n=5). 5. Ischaemic contracture was 46+/-2 mmHg, i.e. 44% of LVDevP in control hearts (n=12), unaffected by low concentrations of nitroprusside (1 and 10 microM) but reduced to approximately 30 mmHg (approximately 25%) at higher concentrations (100 or 1000 microM; P<0.05 vs control, n=6). Conversely, the NO synthase inhibitor L-NOARG reduced contracture at 1 microM to 26+/-3 mmHg (23%), but increased it to 63+/-4 mmHg (59%) at 1000 microM (n=6). Dobutamine (10 microM) exacerbated ischaemic contracture (81+/-3 mmHg; n = 7) and the cyclic GMP analogue Sp-8-(4-p-chlorophenylthio)-3',5'-monophosphorothioate (Sp-8-pCPT-cGMPS; 10 microM) blocked this effect (63+/-11 mmHg; P<0.05 vs dobutamine alone, n=5). 6. At the end of reperfusion, LVDevP was 58+/-5 mmHg, i.e. 55% of pre-ischaemic value in control hearts, significantly increased to approximately 80% by high concentrations of nitroprusside (100 or 1000 microM) or L-NOARG at 1 microM, while a high concentration of L-NOARG (1000 microM) reduced LVDevP to approximately 35% (P<0.05 vs control; n=6). 7. Ischaemia increased tissue cyclic GMP levels 1.8 fold in control hearts (P<0.05; n=12); nitroprusside at 1 microM had no sustained effect, but increased cyclic GMP approximately 6 fold at 1000 microM; L-NOARG (1 or 1000 microM) was without effect (n=6). Nitroprusside (1 or 1000 microM) marginally increased cyclic AMP levels whereas NO synthase inhibitors had no effect (n=6). 8. In conclusion, the cardioprotective effect of NO donors, but not of low concentrations of NO synthase inhibitors may be due to their ability to elevate cyclic GMP levels. Because myocardial cyclic GMP levels were not affected by low concentrations of NO synthase inhibitors, their beneficial effect on ischaemic and reperfusion function is probably not accompanied by reduced formation of NO and peroxynitrite in this model.  相似文献   

15.
Bradykinin-induced responses were studied in isolated porcine iliac arteries. Relaxation was endothelium dependent and seen at low concentrations (10(-10)-10(-8) M) of bradykinin. It was inhibited by the bradykinin B2-receptor antagonist icatibant (HOE-140) and by the nitric oxide synthase inhibitor Nomega-nitro-L-arginine. Bradykinin-induced relaxation was significantly potentiated by the kininase I carboxypeptidase inhibitor mergepta (10(-6) M). Bradykinin (>10(-7) M) elicited contraction of preparations with or without endothelium. The contraction was abolished by indomethacin but was not affected by the thromboxane A2/prostaglandin H2-receptor antagonist SQ 29,548. Icatibant and the bradykinin B1-receptor antagonist desArg9[Leu8]bradykinin significantly decreased bradykinin-induced contraction regardless of endothelial function. The contraction also was decreased by treatment with mergepta. The bradykinin B1-receptor agonist desArg9-bradykinin contracted endothelium-denuded arterial strips. This contraction was significantly decreased by desArg9[Leu8]bradykinin but not by icatibant. The desArg9-bradykinin-induced contraction also was inhibited by the protein-synthesis inhibitor cycloheximide. Neither bradykinin-induced relaxation nor contraction was affected by the ACE inhibitors enalaprilat or cilazaprilat. In conclusion, bradykinin-induced relaxation of isolated porcine iliac arteries was mediated by endothelial bradykinin B2 receptors and mainly nitric oxide. Bradykinin-induced contraction was endothelium independent, indomethacin sensitive, and probably mediated by bradykinin B1 (inducible) and B2 receptors located in the vascular smooth-muscle layer. Kininase I carboxypeptidase, and not ACE, is the main enzyme responsible for bradykinin degradation in these vessels.  相似文献   

16.
One adverse effect of the angiotensin-converting enzyme (ACE) inhibitors used for treatment of hypertension and congestive heart failure is the production of dry coughs. Imidapril is a new type of ACE inhibitor with a very low incidence of coughs. The magnitude and the mechanism of cough potentiation of imidapril and other ACE inhibitors has been studied in guinea-pigs. In normal guinea-pigs single and repeated dosing of imidapril at 0.1 to 100 mg kg-1 had no effect on capasaicin- or citric acid-induced coughs. Single and repeated dosing of enalapril and captopril at 10 to 30 mg kg-1, respectively, significantly increased the number of capsaicin-induced coughs. Repeated dosing of 1 mg kg-1 enalapril also significantly augmented the capsaicin cough. In bronchitic guinea-pigs imidapril also had no effect on the coughs induced by the two stimulants. Enalapril and captopril significantly increased the number of coughs induced not only by capsaicin but also by citric acid. Lower doses of enalapril were enough to augment the capsaicin-induced coughs, whereas medium to large doses failed to augment the cough irrespective of the protocol of administration. Bradykinin-induced discharges of the vegal afferents from the lower airway were significantly increased by enalaprilat but not by imidaprilat. Capsaicin-induced discharges of the afferents were, on the other hand, significantly depressed by enalaprilat, but not by imidaprilat. Interestingly, enalaprilat depression of the discharges was significantly reversed by Hoe-140, a bradykinin B2 receptor blocker. In guinea-pigs pretreated with a low dose of enalapril, arterial infusion of bradykinin significantly potentiated the coughs induced by capsaicin. The results indicated that imidapril was less potent than enalapril and captopril in potentiating cough responses induced by capsaicin and citric acid in guinea-pigs, and further suggest that bradykinin might be a key substance in the mechanism of the potentiation of coughs associated with ACE inhibitors.  相似文献   

17.
We tested the hypothesis that endothelium-dependent vasodilatation is a determinant of insulin resistance of skeletal muscle glucose uptake in human obesity. Eight obese (age 26+/-1 yr, body mass index 37+/-1 kg/m2) and seven nonobese males (25+/-2 yr, 23+/-1 kg/m2) received an infusion of bradykinin into the femoral artery of one leg under intravenously maintained normoglycemic hyperinsulinemic conditions. Blood flow was measured simultaneously in the bradykinin and insulin- and the insulin-infused leg before and during hyperinsulinemia using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET). Glucose uptake was quantitated immediately thereafter in both legs using [18F]- fluoro-deoxy-glucose ([18F]FDG) and PET. Whole body insulin-stimulated glucose uptake was lower in the obese (507+/-47 mumol/m2 . min) than the nonobese (1205+/-97 micromol/m2 . min, P < 0.001) subjects. Muscle glucose uptake in the insulin-infused leg was 66% lower in the obese (19+/-4 micromol/kg muscle . min) than in the nonobese (56+/-9 micromol/kg muscle . min, P < 0.005) subjects. Bradykinin increased blood flow during hyperinsulinemia in the obese subjects by 75% from 16+/-1 to 28+/-4 ml/kg muscle . min (P < 0.05), and in the normal subjects by 65% from 23+/-3 to 38+/-9 ml/kg muscle . min (P < 0.05). However, this flow increase required twice as much bradykinin in the obese (51+/-3 microg over 100 min) than in the normal (25+/-1 mug, P < 0.001) subjects. In the obese subjects, blood flow in the bradykinin and insulin-infused leg (28+/-4 ml/kg muscle . min) was comparable to that in the insulin-infused leg in the normal subjects during hyperinsulinemia (24+/-5 ml/kg muscle . min). Despite this, insulin-stimulated glucose uptake remained unchanged in the bradykinin and insulin-infused leg (18+/-4 mumol/kg . min) compared with the insulin-infused leg (19+/-4 micromol/kg muscle . min) in the obese subjects. Insulin-stimulated glucose uptake also was unaffected by bradykinin in the normal subjects (58+/-10 vs. 56+/-9 micromol/kg . min, bradykinin and insulin versus insulin leg). These data demonstrate that obesity is characterized by two distinct defects in skeletal muscle: insulin resistance of cellular glucose extraction and impaired endothelium-dependent vasodilatation. Since a 75% increase in blood flow does not alter glucose uptake, insulin resistance in obesity cannot be overcome by normalizing muscle blood flow.  相似文献   

18.
To examine the effects of inotropic stimulation on regional myocardial blood flow (MBF), oxidative metabolism, and contractile function in stunned myocardium, nine closed-chest dogs were studied 2 hours postreperfusion after a 25 minute occlusion of the left anterior descending coronary artery (LAD). MBF was determined with microspheres, and regional myocardial oxygen consumption (MVO2) was estimated from the rate constant k1 of the rapid clearance phase of [1-11C] acetate time activity curves, recorded with dynamic positron emission tomography. Myocardium at risk was determined from [13N] ammonia images obtained during occlusion. Wall motion, assessed by two-dimensional echocardiography, was impaired in postischemic myocardium in all dogs 2 hours after reperfusion. Dobutamine infusion increased the rate pressure product by 70% +/- 31% and significantly improved contractile function in the postischemic region in all dogs. In remote myocardium, MVO2 increased from 5.7 +/- 1.2 to 8.6 +/- 1.6 mumol/gm/min, and blood flow from 0.87 +/- 0.16 to 1.52 +/- 0.42 ml/gm/min in response to dobutamine. In reperfused myocardium, MVO2 increased from 3.1 +/- 0.7 to 7.4 +/- 1.5 mumol/gm/min, and blood flow from 0.51 +/- 0.12 to 1.2 +/- 0.4 ml/gm/min. Oxygen extraction increased significantly in reperfused myocardium relative to remote myocardium consistent with a flow-limited response to dobutamine stimulation. The improvement in contractile function failed to correlate significantly with relative increases in MBF or MVO2, suggesting that mechanical function is not as tightly coupled as MBF and MVO2 in postischemic myocardium during inotropic stimulation.  相似文献   

19.
Inhibition of NO synthesis has recently been shown to increase oxygen extraction in vivo, and NO has been proposed to play a significant role in the regulation of oxygen consumption by both skeletal and cardiac muscle in vivo and in vitro. It was our aim to determine whether NO also has such a role in the kidney, a tissue with a relatively low basal oxygen extraction. In chronically instrumented conscious dogs, administration of an inhibitor of NO synthase, nitro-L-arginine (NLA, 30 mg/kg i.v.), caused a maintained increase in mean arterial pressure and renal vascular resistance and a decrease in heart rate (all P<0.05). At 60 minutes, urine flow rate and glomerular flow rate decreased by 44+/-12% and 45+/-7%, respectively; moreover, the amount of sodium reabsorbed fell from 16+/-1.7 to 8.5+/-1.1 mmol/min (all P<0.05). At this time, oxygen uptake and extraction increased markedly by 115+/-37% and 102+/-34%, respectively (P<0.05). Oxygen consumption also significantly increased from 4.5+/-0.6 to 7.1+/-0.9 mL O2/min. Most important, the ratio of oxygen consumption to sodium reabsorbed increased dramatically from 0.33+/-0.07 to 0.75+/-0.11 mL O2/mmol Na+ (P<0.05), suggesting a reduction in renal efficiency for transporting sodium. In vitro, both a NO-donating agent and the NO synthase-stimulating agonist bradykinin significantly decreased both cortical and medullary renal oxygen consumption. In conclusion, NO plays a role in maintaining a balance between oxygen consumption and sodium reabsorption, the major ATP-consuming process in the kidney, in conscious dogs, and NO can inhibit mitochondrial oxygen consumption in canine renal slices in vitro.  相似文献   

20.
OBJECTIVE: This study investigates the role of various flow conditions on maternal hemodynamics during fetal cardiopulmonary bypass. METHODS: Normothermic fetal bypass was conducted under pulsatile, or steady flow, for a 60-minute period. Fetal lamb preparations were randomly assigned to 1 of the 3 groups: steady flow (n=7), pulsatile flow (n=7), or pulsatile blocked flow bypass (n=7), where fetuses were perfused with Nomega-nitro-L-arginine after the first 30 minutes of pulsatile flow to assess the potential role of endothelial autacoids. RESULTS: Maternal oximetry and pressures remained unchanged throughout the procedure. Under fetal pulsatile flow, maternal cardiac output increased after 20 minutes of bypass and remained significantly higher than under steady flow at minute 30 (8.8+/-0.7 L x min(-1) vs 5.9+/-0.5 L x min(-1), P=.02). Maternal cardiac output in the pulsatile group also remained higher than in both steady and pulsatile blocked flow groups, reaching respectively 8.7+/-0.9 L x min(-1) vs 5.8+/-0.4 L x min(-1) (P=.02) and 5.9+/-0.3 L min(-1) (P=.01) at minute 60. Maternal systemic vascular resistances were significantly lower under pulsatile than under steady flow after 30 minutes and until the end of bypass (respectively, 9.1+/-0.6 IU vs 12.7+/-1.1 IU, P=.02 and 8.9+/-0.5 IU vs 12.9+/-1.2 IU, P=.01). Infusion of Nomega-nitro-L-arginine was followed by an increase in systemic vascular resistances from 9.3+/-0.7 IU, similar to that of the pulsatile group, to 13.5+/-1 IU at 60 minutes, similar to that of the steady flow group. CONCLUSIONS: Maternal hemodynamic changes observed under fetal pulsatile flow are counteracted after infusion of Nomega-nitro-L-arginine, suggesting nitric oxide release from the fetoplacental unit under pulsatile fetal flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号