首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 879 毫秒
1.
设计了Y-TZP/LZAS微晶玻璃功能梯度涂层,使用有限元软件分析了成分分布指数、梯度层数目和梯度层厚度等参数对涂层/基体界面残余热应力的影响。结果表明:功能梯度材料的最佳成分梯度指数为m=1;涂层最佳层数为3-5层;涂层最佳厚度为1-1.5 mm;涂层表层主要分布为径向压应力;在涂层/基体界面的边缘区域应力集中较为严重;涂层/基体界面处的径向应力、轴向应力和剪切应力与成分分布指数、梯度层数目和梯度层厚度有密切的关系。用涂搪法制备了梯度涂层,用X射线衍射法(XRD)测试了涂层表面残余应力,验证了有限元结果的准确性。  相似文献   

2.
为了提高钢基体微晶玻璃涂层的韧性,设计了Y-TZP/LZAS微晶玻璃功能梯度涂层。运用有限元软件,分析了梯度层数目、梯度层厚度和层间3Y-TZP体积组分差等参数对涂层/基体界面残余热应力的影响。结果表明,涂层表层主要分布为径向压应力;在涂层/基体界面的边缘区域应力集中较为严重;涂层/基体界面处的径向应力、轴向应力和剪切应力以及梯度层数目、梯度层厚度和3Y-TZP体积组分差均有密切关系。最后通过涂搪法制备了梯度涂层,测试了涂层表面残余应力,并与有限元结果对比,以验证模拟的准确性。  相似文献   

3.
采用喷涂法和溶胶-凝胶法相结合的工艺,以FeAlNi混合粉体为过渡层材料在钢基体表面制备了Fe/Al2O3梯度涂层,并对其微观结构与性能进行分析.结果表明:当烧结温度为1220℃时,梯度涂层与钢基体的界面结合强度达到25.3MPa,涂层主要由α-Al2O3,AlFeO3和NiFe2O4等物相组成.Fe/Al2O3梯度涂层与钢基体的结合主要通过吸附与扩散化合两种方式共同起作用.涂层中没有明显的孔洞和平整的界面,且有树枝状组织生成,涂层与钢基体实现良好的结合,这表明涂层成分的梯度化设计能够有效地缓和界面处的应力集中,改善涂层与钢基体的界面结合状态,提高涂层材料的使用性能.  相似文献   

4.
王力  王海斗  底月兰  赵运才  董丽虹  李帅 《材料导报》2021,35(17):17143-17149
热障涂层因优异的耐高温、耐磨损和耐腐蚀性等优点,被广泛应用在航空发动机等热端部件表面.热障涂层作为零件表面的服役载体,在外界热腐蚀、热梯度应力和机械载荷应力的作用下,易出现表面开裂及界面涂层剥落,这是限制热障涂层长时间使用的瓶颈问题.热障涂层由基体、粘接层、陶瓷层构成,涂层材料特性不同,界面处应力应变分布也不同,在外界载荷条件下,涂层与基体如何实现协同变形,应力如何传递等问题目前尚无明确解释.因此本文主要针对外加载荷作用下,热障涂层内部的应力传递及界面的应力分布问题进行研究.总结当前热障涂层的弹塑性应力模型和损伤应力模型,获得涂层界面应力分布规律,即弹塑性变形阶段,涂层界面应力于一端发生应力集中,并且基体与粘接层界面应力大约是陶瓷层与粘接层界面应力的四倍.随着载荷的增加,涂层表面损伤加剧,其剪滞模型的界面正应力更加符合四分之一椭圆函数,界面剪切应力呈反对称分布,应力分布特征为研究热障涂层在外载条件作用下对裂纹损伤演化行为的影响提供理论依据.  相似文献   

5.
某电厂锅炉引风机叶片在服役中发生断裂。采用宏观观查、化学成分分析、拉伸性能试验、金相检验和硬度测试等方法对叶片断裂的原因进行了分析。结果表明:引风机叶片厚边存在脆硬的堆焊层,在堆焊层表面进行的热喷涂工艺控制不当,导致涂层内部及涂层和基体的界面产生孔洞,降低了涂层的强度、韧性以及涂层和基体界面的结合强度,在风压、飞灰和烟尘的冲刷以及振动应力的作用下,叶片涂层表面或涂层与基体界面发生开裂,裂纹向叶片内部扩展,造成叶片厚边缺口应力集中,裂纹不断向叶片薄边扩展,最终导致叶片发生断裂。  相似文献   

6.
高强涂层结合强度的评价--楔形加载法   总被引:6,自引:0,他引:6  
提出用楔形和载法评价高强度涂层材料与基体的结合强度。该方法利用楔形压头置于有楔形槽的试样中,使楔形压头中心线与涂层基体界面重合,施加静态载荷至试样沿涂层界面开裂,根据试样受力边界条件,给出涂层与基体结合强度的公式。对三种不同涂层的基体材料进行了结合强度试验。结果表明,用楔形加载法可对高强涂层与基体的结合强度进行测试,所得数据分散度与ASTMC633-79标准相同,试验数据不受非随机因素的影响。  相似文献   

7.
隋金玲  李木森  吴波  周海  曹宁 《功能材料》2007,38(4):605-607,611
采用等离子喷涂技术在碳/碳复合材料表面制备了羟基磷灰石(HA)涂层,采用电子拉伸机和自制装置测定了不同喷涂功率下涂层与基体的抗剪强度,采用扫描电镜观察了涂层表面、剪切断裂表面的形貌,采用电子探针分析了试样截面的形貌和成分线分布.结果表明:随着喷涂功率的增加,涂层中HA颗粒的熔化程度和涂层与基体的抗剪强度均增加,涂层与基体的界面属于机械结合,其剪切断裂的形式主要有界面失效和涂层内部失效两种.  相似文献   

8.
利用二维有限元模型对单向T700炭纤维/3234环氧树脂复合材料内部热应力分布进行了数值模拟,同时测试了T700/3234复合材料经不同次数真空热循环后的拉伸强度。研究结果表明,随热循环次数增加,基体应力单调下降,界面应力先下降后上升,25次热循环后变化趋于平缓。界面区域内热应力最大,且产生明显的应力集中。部分界面出现脱粘是复合材料在热循环作用下产生损伤的主要原因。  相似文献   

9.
激光熔覆Ni 基金属陶瓷复合涂层的裂纹研究   总被引:10,自引:3,他引:7       下载免费PDF全文
利用激光熔覆技术在中碳钢表面制备了不同涂层成分的原位自生TiB2 / Ni 金属陶瓷复合涂层, 研究了涂层的开裂行为。结果表明: 当陶瓷相含量高时, 涂层中形成的裂纹主要有粘接金属基体中的穿晶裂纹、熔覆层边缘的高密度裂纹、金属基体与硬质陶瓷相界面上的微裂纹以及热影响区中结合界面附近的微裂纹等。涂层中的裂纹主要是由涂层材料与金属基体热膨胀系数不同而造成的热应力产生的, 组织转变应力也起了重要作用。当激光工艺参数及涂层成分配制合理时, 涂层质量良好。   相似文献   

10.
竹维管束鞘中竹纤维/基体界面力学问题对分析竹维管束在微观尺度下的力学行为起着重要作用。本文针对竹纤维排布方式,并结合竹纤维锥形尖端几何特征,提出了适用于对竹维管束鞘做分析的修正剪滞理论模型,推导出了纤维轴向应力及纤维/基体界面位置处剪应力计算公式,在此基础上讨论了竹纤维长径比和纤维锥形尖端对复合材料内部应力分布的影响。分析发现,竹纤维较大长径比和细长锥形尖端可以实现纤维/基体界面间应力的有效传递。  相似文献   

11.
Thermal annealing has often been used to reduce residual stress and improve mechanical properties and performance of hard coatings. In this work, nanocomposite TiSiN coatings were engineered onto steel substrates by reactive unbalanced magnetron sputtering. Following deposition, thermal annealing was performed at temperatures up to 900 °C. A marked decrease in residual stress was observed in the coatings with the increase of thermal annealing temperature. To ascertain the role of residual stress in the response of the coatings to contact damage, nanoindentation was used to probe the damage resistance of the coatings and Rockwell-C test used to evaluate their adhesion strength, as a function of thermal annealing temperature. A combination of high damage resistance and good adhesion strength was observed for the coating annealed at an intermediate temperature of 600 °C.  相似文献   

12.
In this work an investigation was carried out on adhesion strength and micro-hardness of plasma sprayed coatings on Al-6061 and cast iron substrate materials. For the adhesion test, ASTM C633, and for the micro hardness, ASTM E384 standards were used. From the results obtained it was found that the main failure locations were in the bond coat-substrate interface, which is considered as adhesion strength. The various parameters affecting adhesion strength are also discussed.  相似文献   

13.
In this article, slurry spray technique (SST) has been adopted for depositing mullite–nickel based environmental barrier coatings (EBCs) on some ASTM 1018 low-carbon steel. Considerable value of adhesion strength of a deposited cermet is critical for the coating to comply with service condition. The effect of identified process parameters like stamping pressure, fly ash content, sintering additive, sintering time, and sintering temperature on optimizing adhesion strength is evaluated. Parametric assessment of the developed coatings is done utilizing Taguchi L18 orthogonal array and analysis of variance (ANOVA). Based on the analytical study of the experimentation, the dependence of adhesion strength of slurry sprayed coatings on the process parameters has been studied. Maximum adhesion strength value of 18.15?MPa was attained during experimentation within the range of the selected control parameters. The enhanced adhesion strength was found for increased sintering temperature up to 950°C which may be attributed to the improved sintering of mullite mixed fly ash due to lowering of secondary mullitization temperature. Furthermore, it has been proven experimentally that the quality of coatings achieved in this work is acceptable and approaching to the quality of thermal coatings manufactured with commercially available fabrication methods.  相似文献   

14.
本文采用溶解匹配法测定聚合物的溶解度参数;通过FTIR-ATR、SEM、EMAX能谱等手段表征了合成有机硅丙烯酸树脂与环氧树脂的自分层情况;同时还研究了自分层清漆在环氧底漆上的附着力。结果表明树脂间溶解度参数差为1.7以上时,涂层可形成自分层,且自分层清漆涂层附着力达2 MPa以上。  相似文献   

15.
16.
The interfacial structures of diamond coatings deposited on pure titanium substrate were analyzed using scanning electron microscopy and grazing incidence X-ray diffraction. Results showed that beneath the diamond coating, there was one titanium carbide and hydride interlayer, followed by a heat-affected and carbon/hydrogen diffused Ti layer. Residual stress in the diamond coating and TiC interlayer under different process parameters were measured using Raman and X-ray diffraction (XRD) methods. Diamond coatings showed large compressive stress on the order of a few giga Pascal. XRD analysis also showed the presence of compressive stress in the TiC interlayer and tensile stress in the Ti substrate. With increasing deposition duration, or decreasing plasma power and concentration of CH4 in gas mixture, the compressive residual stress in the diamond coating decreased. The large residual stress in the diamond coating resulted in poor adhesion of the coatings to substrate, but adhesion was also related to other factors, such as the thickness and nature of the TiC interlayer, etc. A graded interlayer design was proposed to lower the thermal stress, modify the interfacial structure and improve the adhesion strength.  相似文献   

17.
Magnesium-containing fluoridated hydroxyapatite (MgxFHA) coatings have been developed to improve the biological performances of fluoridated hydroxyapatite (FHA) coatings. The coatings are deposited on Ti6Al4V substrates via a sol-gel process. The interface between the coating and substrate is characterized by scanning electron microscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy for coating thickness, elemental distribution and chemical states. Pull-off test is used to evaluate the adhesion strength. The results show that the interdiffusion of elements happens at the coating/substrate interface. The incorporation of Mg ions into FHA coatings enhances the pull-off adhesion strength between the coating and the substrate, but no significant difference is observed with different Mg concentrations.  相似文献   

18.
D. Rats  V. Hajek  L. Martinu   《Thin solid films》1999,340(1-2):33-39
Advanced optical applications require multifunctional coatings with specific mechanical properties, such as resistance to damage and good adhesion to different types of substrates, including polymers. In the present study we deposited amorphous hydrogenated silicon nitride (SiN1.3) and oxide (SiO2) films on polycarbonate and on silicon substrates by plasma enhanced chemical vapor deposition (PECVD), using a dual-mode microwave/radio frequency plasma system. The film adhesion was determined by the micro-scratch test. Depth-sensing indentation and substrate curvature measurements were used to evaluate the microhardness. Young's modulus and residual stresses of the films. The adhesion strength, represented by the critical load, Lc, when the film starts to delaminate, was determined as a function of the substrate material and the energy of bombarding ions. A direct correlation between the Lc values and the mechanical properties of the films was found. The formation of different crack patterns in the coatings during the scratch procedure is explained in terms of stress release mechanism depending on the mechanical properties of the film, the substrate and the interface region. In addition, different models applicable to the evaluation of the work of adhesion in the case of hard coatings on soft substrates are critically reviewed.  相似文献   

19.
In order to improve the bone bioactivity and osteointegration of metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing nanostructured HA coatings on titanium alloy Ti6Al4V followed by sintering at 800 degrees C. Nano-sized HA powder was used in the EPD process to produce dense coatings. Moreover, multiwalled carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its mechanical strength. The surface morphology, compositions and microstructure of the monolithic coating of HA and nanocomposite coatings of HA with different CNT contents (4 to 25%) on Ti6Al4V were investigated by scanning-electron microscopy, energy-dispersive X-ray spectroscopy and Xray diffractometry, respectively. Electrochemical corrosion behavior of the various coatings in Hanks' solution at 37 degrees C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. The HA and HA/CNT coatings had a thickness of about 10 microm, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed HA coating. The properties of the composite coatings were optimized by varying the CNT contents. The enhanced properties could be attributed to the use of nano-sized HA particles and CNTs. Compared with the monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating hardness without deteriorating the corrosion resistance or adhesion strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号