共查询到16条相似文献,搜索用时 62 毫秒
1.
FLICM算法是一种基于FCM框架的有效的分割方法。然而,它对于强噪声图像的分割仍然不够准确。本文使用MRF模型的局部先验概率,对FLICM算法从两方面进行了改进。首先,在计算模糊因子时,使用先验概率对距离函数进行加权。改进的模糊因子考虑了更大范围的邻域约束,从而使算法受噪声的影响程度减弱。其次,在分割阶段,进一步使用局部先验概率对FLICM算法的隶属度进行加权。使用改进后的隶属度进行标记判决,使得每一标记的确定需要考虑邻域标记的影响,使分割结果的区域性更好。利用新算法对模拟影像和真实影像进行了分割实验,并与几个考虑空间信息约束的FCM分割算法进行了对比分析,结果证明该算法具有更强的抗噪性能。 相似文献
2.
为了更好地改善图像分割效果,提出一种自适应空间信息的模糊聚类算法(adaptive spatial information fuzzy clustering,ASIFC).算法将图像空间信息与FCM算法相结合,改进了FCM算法的目标函数;使用信息最大化识别噪声数据和消除异常值.在合成图像和核磁共振脑部图像数据库Brainweb上的实验结果表明,该算法能自适应地实现图像分割,有效识别噪声数据,解决了FCM的空间信息缺乏问题,增强了算法的鲁棒性,相比其他几种较新的聚类算法,取得了更好的分割效果. 相似文献
3.
针对模糊聚类算法邻域信息与空间信息利用率低,易受噪声影响的问题,提出一种结合马尔科夫随机场模型的改进模糊C均值算法(Fuzzy C-Means,FCM),即FKMFCM算法。在FCMKM算法基础上添加马尔科夫随机场先验概率,利用先验概率改进FCM算法的目标函数,提高FCM算法抗噪性。为验证FKMFCM算法的性能,选取Bezdek划分系数、Xie_Beni系数、运行时间、迭代次数4个评测指标作为对比实验的评价标准。实验结果表明,FKMFCM算法能有效地提高模糊聚类算法的抗噪性。 相似文献
4.
传统的FCM分割算法只考虑到图像的灰度信息,而忽略了灰度的空间信息,对于迭加了噪声的图像,难以得到准确的结果。从马尔可夫随机场(MRF)中得到启示,考虑到图像灰度信息及其空间分布出发,提出了一种新的基于邻域(Neighbor)信息FCM分割算法,即NFCM算法。实验结果表明该算法所得到的目标图像的边界特征保持完好,图像边界细腻、连续且定位性能好。 相似文献
5.
标准模糊C均值聚类算法由于没有考虑任何与图像空间连续性有关的信息,对噪声高度敏感,针对这一问题,提出一种基于图像空间信息的FCM聚类分割算法。该算法将图像像素的空间信息引入到相似性度量和隶属度函数中,其中空间信息由像素的相对位置和邻域内像素的特征决定。实验结果证明,该方法能有效地对含有一定噪声的图像进行分割,具有较好的抗噪性能。 相似文献
6.
根据局部统计信息引入一个控制参数用于区分某个空间邻域中的噪声点、边缘点和区域内部的点,提出一种合理利用空间信息对隶属度更新的FCM算法。仿真结果表明,使用该算法对附加有偏差场和噪声的脑MR图像进行分割,所得的结果相对于FCM算法和一些改进的算法具有更好的紧致性和分离性。 相似文献
7.
提出了一种分水岭变换和结合空间信息的FCM聚类相结合的图像分割方法。方法采用基于图论的结合区域特征信息和空间信息的距离度量,以分水岭变换得到的图像分割小区域为节点构建一个连通加权图,通过计算图上不同节点之间的最短路径来度量不同区域之间的相似程度,从而实现过分割小区域的合并。该方法综合考虑了区域的特征之间的差异和空间位置的差异,与传统的FCM聚类方法在特征空间进行聚类相比,具有较强的噪声抑制能力。图像分割的实验结果证明了该算法的可行性和有效性。 相似文献
8.
基于改进的FCM的人脑MR图像分割 总被引:2,自引:0,他引:2
传统模糊C均值广泛应用于图像分割,它是一种经典的模棚聚类分析方法,但是FCM算法对于初始值的选择都是采取随机的方法,强烈依赖于初始值的选择,收敛结果容易陷入局部最小值,并且FCM并没有考虑图像的空间信息,因而对噪声十分敏感。提出改进的FCM方法,采用新的方法确定初始值的选择,然后考虑空间信息,利用Gibbs随机场的性质引入先验邻域约束信息,重新确定像素的模糊隶属度值,同时再进一步地调整距离矩阵。通过实验可以表明,此改进的方法具有很好的分割效果,同时对噪声具有较强的鲁棒性。 相似文献
9.
在经典的融合空间信息的模糊聚类图像分割方法中,图像像素的空间信息大,都采用正方形的邻域窗来获取。为了更好地分割出图像中的边界及细节信息,对不同形状邻域空间信息的模糊聚类图像分割进行了研究。在该方法中,首先采用圆形、三角形和菱形邻域窗获得图像像素的空间信息,然后分别将这三种空间信息引入到融合空间信息的模糊聚类图像分割中。Berkeley图像上的分割实验表明分别采用圆形、三角形和菱形邻域窗获得图像像素空间信息的模糊聚类图像分割方法在分割性能上要优于融合正方形邻域窗空间信息的方法。 相似文献
10.
基于改进FCM聚类算法的火灾图像分割 总被引:1,自引:0,他引:1
研究火灾识别问题,火灾图像分割是火灾特征提取和识别的前提,其分割效果直接影响火灾识别的准确率.针对现有分割方法中存在的经验阈值难以确定和因彩色信息丢失导致分割不准确等问题,为了准确识别火灾图像,提出一种改进的FCM聚类的火灾图像分割方法.方法选用符合人眼视觉特性的HSI颜色空间,根据数据分布特点确定色度分量H和亮度分量Ⅰ的初始聚类中心,分别在直方图特征空间进行模糊聚类处理,并利用像素的空间信息对模糊隶属度函数做了改进,最后在由两分量的模糊隶属度组成的二维特征空间上进行火灾图像分割.实验结果表明,算法可排除高亮区域的干扰,准确分割出火焰区域,为后续的火灾识别提供重要依据. 相似文献
11.
基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,其具有描述简洁、易于实现、分割效果好等优点,但也存在运算时间过长等问题,本文提出了一种新的快速FCM图像分割算法,该算法首先将图像数据划分成一定数量的子集,然后利用区域粗糙度标记所有子集,最后根据子集质心及其权重进行模糊聚类图像分割,仿真实验结果表明,该算法能够以保证图像分割质量为前提,大幅度提高FCM图像分割速度,故具有一定应用价值。 相似文献
12.
13.
针对亮度不一致的阴影路面的目标分割问题,对使用空间关系约束的模糊聚类算法进行了改进,即首先定义了像素之间以及像素与区域之间的近邻关系,并构造了像素与区域之间的空间关系隶属度矩阵,然后将此矩阵约束到传统的模糊C-均值聚类算法的隶属度矩阵中,最终形成了基于空间关系约束的模糊聚类算法。该算法只需设置很少的参数即可自动完成聚类。该算法在受光照影响导致目标亮度不一致的林荫道道路图像中进行了实验。实验结果表明,该算法对机器人导航中阴影路面的一致性分割方面具有良好的效果。 相似文献
14.
针对分水岭变换算法对噪声敏感和易于产生过分割的问题,提出了一种基于分水岭变换和模糊C均值聚类(FCM)的图像分割算法。该算法不仅解决了分水岭变换算法的过分割问题,而且同时解决了FCM算法初始值难以确定的不足。实验结果显示,该算法可以快速准确地分割出目标,是一种有效的方法。 相似文献
15.
以模糊C均值(FCM)聚类理论为基础,选用符合人眼视觉特性的HSI颜色空间,提出了一种新的多分量彩色图像分割算法。该算法首先结合数据分布特点确定出H分量与I分量的初始聚类中心;然后利用FCM聚类技术对H分量、I分量进行分类处理,以得到不同分量的像素点隶属度;最后,将所得到的不同分量像素点隶属度组织成2维特征,并以此进行模糊聚类图像分割。实验结果表明,该算法可有效提高图像分割效果,其分割结果优于传统FCM聚类图像分割方案。 相似文献
16.
对噪声图像提出了一种改进的模糊聚类分割算法。因为模糊C均值聚类(FCM)算法具有对噪声数据敏感的缺点,该算法通过提升意义更趋明晰的模糊隶属度来改变模糊聚类中的目标函数,即通过在标准的FCM算法中使用到类的Voronoi cell的距离来取代到类的原型的欧氏距离,从而增强了聚类结果的鲁棒性。实验结果表明,改进的算法较之于FCM对于噪声图像的分割有更好的鲁棒性。 相似文献