共查询到20条相似文献,搜索用时 62 毫秒
1.
针对风电功率预测精度低且模型不稳定的问题,提出基于双阶段注意力机制生成对抗网络(SAM-WGAN-GP)的短期风电功率预测模型。首先,在生成对抗网络的生成模型中引入自注意力机制和时间注意力机制,通过自注意力机制自适应的选择输入特征,并通过时间注意力机制捕获风电数据时间序列的长时间依赖性;判别模型采用卷积神经网络,提高模型的预测精度。其次,将SAM-WGAN-GP网络的生成器损失函数和均方根误差结合作为目标函数,以提高模型的稳定性,同时为解决判别器缓慢学习的问题,引入双时间尺度更新规则(TTUR)以平衡网络的训练过程。最后,以甘肃省酒泉市某风电场的实际运行数据为例,验证SAM-WGAN-GP模型不仅能自适应选择输入特征,而且可捕捉风电数据的长时间依赖性,并提高预测精度。 相似文献
2.
针对风电场输出功率不稳定特性造成风功率预测精度不高问题.采用集合经验模态分解(EEMD)将风功率信号分解为若干个平稳的子序列,可避免经验模态分解(EMD)出现错误的本征模态函数(IMF)分量;利用相空间重构对分解获得的平稳子序列进行重构;提出一种鲸鱼算法(WOA),优化风功率平稳子序列重构参数和最小二乘支持向量机(LS... 相似文献
3.
4.
《可再生能源》2016,(11)
为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法(fruit fly optimization algorithm,FOA)-最小二乘支持向量机(least squares support vector machine,LSSVM)的组合预测方法。首先,运用CEEMD算法把风电功率序列分解为若干个分量,并用PSR算法来确定LSSVM建模过程中各个分量的输入和输出;然后,采用FOA算法优化LSSVM建模中的参数,并用训练好的LSSVM对各个分量进行单独预测;最后,用某风电场的实测数据对该组合预测方法进行验证。结果表明,与单独的LSSVM方法和FOA-LSSVM方法预测结果相比,建立的组合模型预测方法精度更高,对风电功率的短期预测更为有效和适用。 相似文献
5.
针对风电功率概率短期区间预测问题,提出了基于集合经验模态分解(EEMD)与人群搜索算法(SOA)优化的核极限学习机(KELM)模型。首先,在风电功率非平稳性时频分析的基础上,利用EEMD将原始风电功率序列分解为不同的子序列,并对各EEMD子序列建立基于上下限直接估量的预测子模型。然后,使用SOA寻求KELM子模型输出权值上下限的最优解,以优化模型预测性能。最后,以实际数据为算例,将本文模型与粒子群优化(PSO)算法优化的5种预测模型进行对比。结果表明:EEMD-SOA-KELM模型收敛速度更快且全局收敛,可获得更加可靠优良的区间预测结果。 相似文献
6.
针对当前风电功率预测过程中历史信息利用不充分及多维输入权重值固定忽略了不同时间维度的特征重要性的问题,提出一种基于特征变权的风电功率预测模型。该方法利用随机森林(RF)分析不同高度处的风速、风向、温度等气象特征对风电输出功率的影响程度,并利用累积贡献率完成气象特征的提取。对提取的特征及历史功率信息利用奇异谱分析(SSA)去噪,以去噪后的数据作为输入建立级联式FA-CNN-LSTM多变量预测模型对超短期风电功率进行预测。通过在CNN-LSTM网络中增加特征注意力机制(FA)自适应挖掘不同时刻的特征关系,动态调整不同时间维度各输入特征的权重,加强预测时刻关键特征的注意力,从而提升预测性能。基于某风电场实测数据的算例分析表明,所提方法可有效提高超短期风电功率预测精度。 相似文献
7.
为了解决高比例不确定性风电接入电力系统带来强烈调频需求的问题,提出了基于混合深度学习模型的风电功率预测及其一次调频应用方法。首先,采用孤立森林(Isolated Forest, IF)对历史数据进行异常值处理,提高数据质量,其次,构建卷积神经网络(Convolutional Neural Network, CNN)、双向长短期记忆(Bidirectional Long Short Term Memory, BiLSTM)和注意力机制(Attention Mechanism, AM)的混合深度学习模型对风电功率进行预测。最后,依据功率预测精度配置超级电容器储能,设计储能调频控制原则,弥补风电机组自身预测误差,并协同风电机组参与电力系统一次调频。基于预测结果为4台风电发电机组2个负荷区域仿真系统配置超级电容器储能系统,利用digsilent平台进行了风预测误差和负荷波动下的一次调频仿真。结果表明:所提IF-CNN-BiLSTM-AM模型比BP和LSTM基准模型预测误差(MSE)降低了81.53%和51.44%,具有最优的预测性能;设计的风储一次调频模型与原则可有效应对风电预测误差和负荷波动... 相似文献
8.
针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。 相似文献
9.
10.
考虑到数值天气预报网格点位置和系统误差对短期风电功率预测精度的影响,提出一种基于奇异值分解与卡尔曼滤波修正多位置数值天气预报的短期风电功率预测模型。首先通过奇异值分解对多位置数值天气预报数据进行特征提取与降维处理;然后使用卡尔曼滤波方法修正数值天气预报风速数据,降低数值天气预报的系统误差;最后基于极端随机森林算法,利用修正的数值天气预报数据搭建短期风电功率预测模型。通过对某风电场进行仿真,并与单位置、未降维、未修正模型比较,结果表明降维修正模型的预测效果最好,平均误差和均方根误差分别为7.94%和9.96%。 相似文献
11.
风电已在电力系统中得到了有效利用,因此,弃风电量的准确预测对于电网的安全、经济运行至关重要。文章提出了一种基于集合经验模态分解(EEMD)和t分布自适应变异布谷鸟算法(ACS)优化改进极限学习机(SELM)的弃风电量组合预测方法(EEMD-ACS-SELM)。该方法先采用集合经验模态分解,将原始弃风电量序列分解为一系列不同频率的分量,基于模糊熵理论计算各分量的熵值,并将熵值相似序列重构为新的子序列。然后,将新序列分别建立改进极限学习机预测模型,利用ACS优化算法对SELM算法的输入权值和阈值进行优化。最后,将各序列预测值叠加求和得到原始弃风电量序列的预测值。以新疆某风电场实际运行数据进行算例分析,结果表明,文章所提方法对弃风电量的预测具有较高的精度。 相似文献
12.
针对滚动轴承振动信号易受环境噪声干扰及浅层学习模型依赖人工经验难以准确提取故障特征的难题,提出了一种优化自适应白噪声平均总体经验模态分解(OCEEMDAN)与卷积神经网络(CNN)联合的故障诊断方法。采用自适应白噪声平均总体经验模态分解(CEEMDAN)算法对原始信号进行分解,分形维数筛选最佳分量,奇异值(SVD)降噪优化,输入CNN实现故障诊断,分别与EMD-CNN、EEMD-CNN及CEEMDAN-CNN方法进行对比。结果表明:该方法在不同工况下均具有较高的识别率,突显了良好的鲁棒性与泛化性。 相似文献
13.
精准的NOx排放预测模型能够提高SCR系统的脱硝效率,为此本文分析了一维卷积神经网络在NOx预测领域的应用,并提出了一种结合集成经验模态分解和卷积神经网络的NOx排放预测方法。首先,对原始数据进行预处理,并采用互信息法确定输入变量。然后,采用集成经验模态分解算法对NOx数据进行分解处理,降低NOx数据的预测难度。最后,基于一维卷积神经网络构建各分量的预测模型并进行重构,得到最终的NOx预测结果。基于某电厂的实际运行数据进行实验,实验结果表明,所提出模型预测结果的平均绝对百分比误差为3.34%。一维卷积神经网络的超参数实验说明了Adam优化方法和合适的输入步长有利于模型的训练,但是dropout正则化不利于模型的性能提升 相似文献
14.
15.
Considering the inevitable prediction errors in the traditional point predictions of wind power, in this paper, a new ultra short‐term probability prediction method for wind power is proposed, in which the long short‐term memory (LSTM) network, wavelet decomposition (WT), and principal component analysis (PCA) are combined together for ultra short‐term probability prediction of wind power, a conditional normal distribution model that is developed to describe the uncertainty of prediction errors. First, WT and PCA are jointly used to smooth the original time series, then the point prediction model for subsequence data based on LSTM network is proposed. It is worth pointing out that the input matrix of the model includes many features, such as wind power and wind speed, which will be helpful for improving prediction performance. After optimizing the index of the ultra short‐term probability prediction interval (PI) of wind power by particle swarm optimization (PSO), the conditional normal distribution model of prediction errors is developed. Thus, the ultra short‐term PIs for wind power are obtained. Finally, based on the data of two wind farms in China, simulation results are provided to illustrate the usefulness of the proposed prediction model. It follows from those results that the proposed method can improve the accuracy of prediction, and the reliability of probability prediction for wind power is also improved. 相似文献
16.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。 相似文献
17.
为了提高小型风力发电系统的可靠性和能量转换效率,文章设计了一种带有高频环节的单相正弦逆变器,该逆变器提出采用双BP神经网络控制。在Matlab下建立了逆变器仿真模型,仿真结果表明,设计的BP神经网络控制器可以使单相正弦逆变器具有较高的稳态精度和动态特性,满足小型风力发电系统的需要。 相似文献
18.
Wind power prediction (WPP) has an important impact on the security and reliability operations of the power grid. The major difficulty in power prediction of new, expanded, or reconstructed wind farms is the lack of operational data, which leads to insufficient training of the model and makes the prediction error of wind power become enormous. A short-term WPP model based on stacked denoised auto-encoder (SDAE) deep learning and multilevel transfer learning is proposed in this paper. First, the correlation coefficient between the samples of source wind farms and the target wind farm is calculated by using a network trained with the samples from the target wind farm. Second, the samples with high correlation coefficients in source wind farms are graded and migrated to the target wind farm to assist multilevel transfer learning. Finally, the samples from different grades are each used to train a layer of SDAE, and their weights and thresholds are migrated to the final network. The case study shows that the 24-h-day-ahead normalized root-mean-square error (NRMSE) and 96-h-short-term NRMSE obtained by the proposed method are 4.48% and 5.11% lower, respectively, compared with the model without transfer learning, which proves the effectiveness of the proposed model. 相似文献
19.
高精度的短期负荷预测不仅是电力系统运行稳定的关键,也是构建智能电网的必要保证。为提高电力系统短期负荷预测精度,提出了一种基于完整集成经验模态分解(CEEMDAN)、随机森林(RF)和AdaBoost的预测方法。针对传统分解方法不能完整分解原始负荷序列的问题,利用CEEMDAN分解方法为各个阶段的IMF分解信号添加特定的白噪声,通过计算余量信号来获得各个模态分量,然后针对前9个模态分量构建RF预测模型,针对残余量构建AdaBoost预测模型,并对结果进行重构预测,得出未来24h的负荷预测数据。最后将CEEMDAN+RF+AdaBoost方法应用于华中地区的短期负荷预测,在同等条件下,与预测模型CEEMDAN+RF、EEMD+RF+AdaBoost、EMD+RF+AdaBoost、RF及AdaBoost进行试验对比,结果表明所构建预测模型的精度优于其他对比模型,具有很好的理论指导意义和实际应用前景。 相似文献
20.
针对超短期风电功率预测,准确捕捉功率变化因素和建立混合预测模型是提高预测精度的有效手段之一。为了能够继承和整合单个模型的优点以及增强历史信息的表示和利用能力,文章提出了一种基于信息融合和堆叠模型的超短期风电功率预测模型。首先,利用相关性方法选择历史功率序列和历史测风塔数据的特征,作为预测模型的输入;然后,建立两层堆叠的集成模型作为预测模型,并使用交叉验证和超参数优化以增强预测模型的泛化性能;最后,以每个基学习器的输出作为元学习器获得最终预测值的新输入。通过东北某风电场真实数据的验证,以及与单一模型、深度神经网络模型和集成学习模型的对比,验证了所提模型的可行性和有效性。 相似文献