首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
热轧TRIP钢具有优异的力学性能,热轧生产后经过酸洗处理可以直接用于汽车制造。采用Gleeble3500型热模拟试验机研究了C-Si-Mn-Nb系热轧TRIP钢形变奥氏体在不同连续冷却条件下的组织变化情况,绘制了动态CCT曲线。通过研究不同冷速下试样组织发现,冷却速率越大,组织中未转变奥氏体含量越低。最后,依据对动态CCT曲线的分析在Gleeble3500型热模拟试验机上模拟热轧了TRIP钢。结果表明:实验钢轧后以15℃/s的低冷却速率冷却至贝氏体区等温后,残留奥氏体的含量和稳定性更高,TRIP钢力学性能优异,抗拉强度和伸长率分别达到952 MPa和30%,强塑积高达28560 MPa·%。  相似文献   

2.
利用真空熔炼试制了三种不同C含量的含铝TRIP钢,采用DSC测试方法测得一系列相变点,并借助Thermo-Calc软件对试验钢进行了平衡热力学计算,得到了试验钢的平衡相图及相变点的计算值,实验值比计算值偏高。综合考虑实验值与计算值的偏差,可为Al代Si TRIP钢的成分优化及热处理工艺提供参考。  相似文献   

3.
Al元素对TRIP钢组织的影响   总被引:3,自引:0,他引:3  
王海涛  何燕霖  张梅 《上海金属》2005,27(5):23-25,36
研究不同热处理条件下不同成分TRIP钢的组织变化,并借助Thermo—Calc热力学软件对试验钢进行了平衡热力学计算。结果表明,Al的加入会对TRIP钢的组织变化过程产生一定的影响;该计算结果可为TRIP钢的成分优化及热处理工艺确定提供参考。  相似文献   

4.
利用Gleeble-1500热应力/应变模拟机对TRIP钢进行热模拟试验研究,发现试验钢的最终组织主要由铁素体(F)、贝氏体(B)和残余奥氏体组成。结果表明:加热温度为800℃时,试样的显微组织较为理想;贝氏体等温温度为400℃且等温时间为3 min时,试样的显微组织较为理想,工艺制度最佳。为TRIP钢工艺制定提供了重要指导。  相似文献   

5.
相变诱导塑性(TRIP)钢是一种高强汽车用钢,一般通过热轧控制冷却或冷轧+热处理工艺进行生产,其组织由铁索体+贝氏体+残余奥氏体组成。本文介绍了TRIP钢的组织、性能特点及其生产工艺,对TRIP钢研究趋势做了展望。  相似文献   

6.
主要研究了Cr对低碳Si-Mn系TRIP钢组织与力学性能的影响。首先利用Formastor-F型膨胀仪测定了含Cr和不含Cr两种低碳钢的连续冷却转变(CCT)曲线,分析指出了Cr对连续退火工艺的潜在影响;然后采用Gleeble-3800热/力模拟试验机对两种钢的薄板试样进行了连续退火模拟实验,并通过拉伸试验测定了力学性能;最后采用金相、扫描电镜、X-射线衍射分析等技术考察分析了两种钢的显微组织。结果表明:含Cr的TRIP钢的组织比较细小,铁素体晶粒近似等轴分布;两种TRIP钢的残余奥氏体含量相近,但含Cr钢的残余奥氏体中的含碳量较高。分析认为这是由于含Cr钢在热轧阶段较易生成细小的组织,而在热处理阶段则抑制贝氏体的生成,最终获得稳定的残余奥氏体。  相似文献   

7.
相变诱导塑性TRIP钢的研究进展   总被引:5,自引:0,他引:5  
相变诱导塑性(TRIP)钢是一种高强汽车用钢,一般通过热轧控制冷却或冷轧+热处理工艺进行生产,其组织由铁素体+贝氏体+残余奥氏体组成。本文介绍了TRIP钢的组织、性能特点及其生产工艺,对TRIP钢研究趋势做了展望。  相似文献   

8.
采用CCT-AY-Ⅱ型钢板连续退火机模拟分析了V元素添加对TRIP800钢组织性能的影响规律。采用SEM和TEM等微观分析方法观察含钒与不含钒TRIP的微观组织,利用XRD法测量了残留奥氏体量,实验室测量了其力学性能。结果表明,随着退火温度的升高,试验钢铁素体相比例降低,贝氏体相比例升高,且含钒TRIP钢中有V(C,N)析出。820℃保温时,试验钢均获得最佳的综合力学性能。V元素的添加增加了试验TRIP钢的抗拉强度,而降低了屈服强度,有效降低了TRIP钢屈强比。且含V TRIP钢瞬时加工硬化指数前期大于无V TRIP钢,后期则小于无V TRIP钢。  相似文献   

9.
基于薄板坯连铸连轧工艺(CSP)和传统热连轧工艺特点,在实验室利用显微观察与拉伸试验,研究了两种热轧工艺对热轧基板与冷轧热处理后TRIP钢的微观组织及力学性能影响规律。并采用TEM对基于CSP工艺制备的冷轧热处理TRIP钢的微观组织特点进行分析。结果表明:CSP工艺制备的热轧板较传统热连轧工艺有利于获得更高的强度;CSP工艺制备冷轧热处理TRIP钢的抗拉强度与断后伸长率均优于传统热连轧工艺所制备的冷轧热处理TRIP钢,前者性能能达到780 MPa级TRIP钢的要求;通过TEM观察,基于CSP工艺制备冷轧热处理TRIP钢的残留奥氏体主要分布于铁素体晶界,少量分布于铁素体晶内和贝氏体板条间的薄膜处。  相似文献   

10.
基于动态相变热轧C-Mn-Si系TRIP钢的组织及性能   总被引:3,自引:1,他引:2  
通过热模拟压缩实验,研究了基于动态相变的热轧C-Mn-Si系TRIP钢的组织特征及性能特点.结果表明,通过基于动态相变的热轧工艺,可以获得具有铁素体晶粒尺寸细小、贝氏体团径较小、贝氏铁素体板条较短且位向混乱、颗粒状残余奥氏体较多且分布弥散等特点的热轧TRIP钢.与750℃等温相变的热轧工艺相比,基于动态相变的热轧工艺制备的TRIP钢具有较高的强度和良好的塑性.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号