首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Honey Bees Mating Optimization algorithm is a relatively new nature inspired algorithm. In this paper, this nature inspired algorithm is used in a hybrid scheme with other metaheuristic algorithms for successfully solving the Vehicle Routing Problem. More precisely, the proposed algorithm for the solution of the Vehicle Routing Problem, the Honey Bees Mating Optimization (HBMOVRP), combines a Honey Bees Mating Optimization (HBMO) algorithm with the Multiple Phase Neighborhood Search–Greedy Randomized Adaptive Search Procedure (MPNS–GRASP) and the Expanding Neighborhood Search (ENS) algorithm. Besides these two procedures, the proposed algorithm has, also, two additional main innovative features compared to other Honey Bees Mating Optimization algorithms concerning the crossover operator and the workers. Two sets of benchmark instances are used in order to test the proposed algorithm. The results obtained for both sets are very satisfactory. More specifically, in the fourteen classic instances proposed by Christofides, the average quality is 0.029% and in the second set with the twenty large scale vehicle routing problems the average quality is 0.40%.  相似文献   

2.
The Probabilistic Traveling Salesman Problem (PTSP) is a variation of the classic Traveling Salesman Problem (TSP) and one of the most significant stochastic routing problems. In the PTSP, only a subset of potential customers need to be visited on any given instance of the problem. The number of customers to be visited each time is a random variable. In this paper, a new hybrid algorithmic nature inspired approach based on Particle Swarm Optimization (PSO), Greedy Randomized Adaptive Search Procedure (GRASP) and Expanding Neighborhood Search (ENS) Strategy is proposed for the solution of the PTSP. The proposed algorithm is tested on numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the classic GRASP algorithm, the classic PSO and with a Tabu Search algorithm are also presented. Also, a comparison is performed with the results of a number of implementations of the Ant Colony Optimization algorithm from the literature and in 13 out of 20 cases the proposed algorithm gives a new best solution.  相似文献   

3.
Greedy Randomized Adaptive Search Procedure (GRASP) has been proved to be a very efficient algorithm for the solution of the Traveling Salesman Problem. Also, it has been proved that expanding the local search with the use of two or more different local search strategies helps the algorithm to avoid trapping in a local optimum. In this paper, a new modified version of GRASP, called Multiple Phase Neighborhood Search-GRASP (MPNS-GRASP), for the solution of the Vehicle Routing Problem is proposed. In this method, a stopping criterion based on Lagrangean Relaxation and Subgradient Optimization is utilized. In addition, a different way for expanding the neighborhood search is used based on a new strategy, the Circle Restricted Local Search Moves strategy. The algorithm was tested on two sets of benchmark instances and gave very satisfactory results. In both sets of instances the results have solution qualities with average values near to the optimum values and in a number of them the algorithm finds the optimum. The computational time of the algorithm is decreased significantly compared to other heuristic and metaheuristic algorithms due to the fact that the new strategy, the Expanding Neighborhood Search Strategy, is used.  相似文献   

4.
The finding of the suitable parameters of an evolutionary algorithm, as the Bumble Bees Mating Optimization (BBMO) algorithm, is one of the most challenging tasks that a researcher has to deal with. One of the most common used ways to solve the problem is the trial and error procedure. In the recent few years, a number of adaptive versions of every evolutionary and nature inspired algorithm have been presented in order to avoid the use of a predefined set of parameters for all instances of the studied problem. In this paper, an adaptive version of the BBMO algorithm is proposed, where initially random values are given to each one of the parameters and, then, these parameters are adapted during the optimization process. The proposed Adaptive BBMO algorithm is used for the solution of the Multicast Routing Problem (MRP). As we would like to prove that the proposed algorithm is suitable for solving different kinds of combinatorial optimization problems we test the algorithm, also, in the Probabilistic Traveling Salesman Problem (PTSP) and in the Hierarchical Permutation Flowshop Scheduling Problem (HPFSP). Finally, the algorithm is tested in four classic benchmark functions for global optimization problems (Rosenbrock, Sphere, Rastrigin and Griewank) in order to prove the generality of the procedure. A number of benchmark instances for all problems are tested using the proposed algorithm in order to prove its effectiveness.  相似文献   

5.
徐小平  唐阳丽  王峰 《计算机应用》2022,42(6):1837-1843
针对传统人工协同搜索(ACS)算法求解精度不高、收敛速度慢等问题,提出一种基于Sigmoid函数的反向人工协同搜索(SQACS)算法求解旅行商问题(TSP)。首先,利用Sigmoid函数构造比例因子,增强算法的全局搜索能力;其次,在变异阶段,加入差分进化(DE)算法的DE/rand/1变异策略,对当前种群进行二次变异,提高算法的计算精度和种群的多样性;最后,在算法后期的开发阶段,引入拟反向学习策略,进一步提高解的质量。对TSP测试库TSPLIB中的4个实例进行仿真实验,结果显示,SQACS算法在最短路径与花费时间上均优于麻雀搜索算法(SSA)、DE、阿基米德算法(AOA)等7种对比算法,并且具有良好的鲁棒性;与其他求解TSP的改进算法综合对比,SQACS算法也显示了良好的性能。实验结果表明,SQACS算法在求解小规模TSP时是有效的。  相似文献   

6.
The Glowworm Swarm Optimization (GSO) algorithm is a relatively new swarm intelligence algorithm that simulates the movement of the glowworms in a swarm based on the distance between them and on a luminescent quantity called luciferin. This algorithm has been proven very efficient in the problems that has been applied. However, there is no application of this algorithm, at least to our knowledge, in routing type problems. In this paper, this nature inspired algorithm is used in a hybrid scheme (denoted as Combinatorial Neighborhood Topology Glowworm Swarm Optimization (CNTGSO)) with other metaheuristic algorithms (Variable Neighborhood Search (VNS) algorithm and Path Relinking (PR) algorithm) for successfully solving the Vehicle Routing Problem with Stochastic Demands. The major challenge is to prove that the proposed algorithm could efficiently be applied in a difficult combinatorial optimization problem as most of the applications of the GSO algorithm concern solutions of continuous optimization problems. Thus, two different solution vectors are used, the one in the continuous space (which is updated as in the classic GSO algorithm) and the other in the discrete space and it represents the path representation of the route and is updated using Combinatorial Neighborhood Topology technique. A migration (restart) phase is, also, applied in order to replace not promising solutions and to exchange information between solutions that are in different places in the solution space. Finally, a VNS strategy is used in order to improve each glowworm separately. The algorithm is tested in two problems, the Capacitated Vehicle Routing Problem and the Vehicle Routing Problem with Stochastic Demands in a number of sets of benchmark instances giving competitive and in some instances better results compared to other algorithms from the literature.  相似文献   

7.
毛力  童科  沈明明  董洪伟 《计算机工程》2010,36(15):171-173
通过对玻璃切割问题的研究,提出一种融合量子粒子群优化和蚁群优化的混合算法(QPSO-ACO算法)。该算法对QPSO及ACO的模型进行必要的修改,以实现对玻璃切割中的旅行商问题的较好求解。同时充分利用QPSO的快速性、全局收敛性和ACO的正反馈性及求精解效率高等特点,达到优势互补。实验结果表明,QPSO-ACO算法寻优能力较强,是解决玻璃切割问题的有效方法。  相似文献   

8.
Nature inspired methods are approaches that are used in various fields and for the solution for a number of problems. This study uses a nature inspired method, namely Honey Bees Mating Optimization, that is based on the mating behaviour of honey bees for a financial classification problem. Financial decisions are often based on classification models which are used to assign a set of observations into predefined groups. One important step towards the development of accurate financial classification models involves the selection of the appropriate independent variables (features) which are relevant for the problem at hand. The proposed method uses for the feature selection step, the Honey Bees Mating Optimization algorithm while for the classification step, Nearest Neighbor based classifiers are used. The performance of the method is tested in a financial classification task involving credit risk assessment. The results of the proposed method are compared with the results of a particle swarm optimization algorithm, an ant colony optimization, a genetic algorithm and a tabu search algorithm.  相似文献   

9.
This paper tackles a Traveling Salesman Problem variant called Traveling Car Renter Problem, where one car renter desires to travel among cities using a rented vehicle. Basically, the car renter has two options when he/she arrives in a city: to return the vehicle and rent another one or to keep the same car until the next city. Every time a car is delivered in a city, a return fee must be paid. Travel cost between any pair of cities also depends on the chosen car. The objective is to establish a Hamiltonian cycle minimizing the travel costs and returning fees. An evolutionary algorithm (EA) and a hybrid method called Adaptive Local Search Procedure (ALSP) are proposed for this problem. Both were compared to the best known algorithm in literature and obtained better results for non-Euclidean instances. Such algorithms compose an efficient model for a better exploration of the problem solutions space. From the expert system point-of-view, we propose a novel inference engine with minimized results error.  相似文献   

10.
– Ant System     
Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method for attacking hard combinatorial optimization problems. Yet, its performance, when compared to more fine-tuned algorithms, was rather poor for large instances of traditional benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Optimization algorithms could be good alternatives to existing algorithms for hard combinatorial optimization problems, recent research in this area has mainly focused on the development of algorithmic variants which achieve better performance than Ant System.In this paper, we present – Ant System ( ), an Ant Colony Optimization algorithm derived from Ant System. differs from Ant System in several important aspects, whose usefulness we demonstrate by means of an experimental study. Additionally, we relate one of the characteristics specific to — that of using a greedier search than Ant System — to results from the search space analysis of the combinatorial optimization problems attacked in this paper. Our computational results on the Traveling Salesman Problem and the Quadratic Assignment Problem show that is currently among the best performing algorithms for these problems.  相似文献   

11.
Clustering techniques have received attention in many fields of study such as engineering, medicine, biology and data mining. The aim of clustering is to collect data points. The K-means algorithm is one of the most common techniques used for clustering. However, the results of K-means depend on the initial state and converge to local optima. In order to overcome local optima obstacles, a lot of studies have been done in clustering. This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Modify Imperialist Competitive Algorithm (MICA) and K-means (K), which is called K-MICA, for optimum clustering N objects into K clusters. The new Hybrid K-ICA algorithm is tested on several data sets and its performance is compared with those of MICA, ACO, PSO, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and K-means. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handling data clustering.  相似文献   

12.
TSP问题是一个典型的组合优化问题.针对TSP问题的两种主要算法:遗传算法和蚁群算法,进行了分析和研究.并且提出了网络浏览器运行的实现方法,给出了系统实现的B/S三层架构.最后,运用本算法和实现的技术,作为应用实例实现了ERP物流配送路径决策支持系统的原型.  相似文献   

13.
求解旅行商问题的高效自适应混合蚂蚁算法   总被引:3,自引:1,他引:3  
在目前求解TSP问题效果最好的混合算法——最大最小蚂蚁算法和3-opt局部搜索算法的基础上,提出了一种改进的混合蚂蚁算法。算法前期使用局部搜索的解初始化信息素矩阵,加快收敛速度,后期依Metropolis接受准则概率接受局部优化解,有效地避免陷入局部最优,自适应的信息素调节机制使算法更加灵活,而K近邻候选集则使之适应大规模问题求解,理论分析和TSPLIB中部分实例仿真结果表明,此算法能比其他改进蚁群算法具有更多优越性。  相似文献   

14.
针对元件的抓取路径规划问题,提出一种以最小化时间为目的,结合蚁群算法和禁忌搜索算法的混合优化算法。首先,将基于机器视觉抓取元件的问题确定为有约束的旅行商问题(TSP);然后,分析了元件大小和抓取放置过程对于路径规划的综合影响,对路径选择概率和禁忌域进行了适应性改进;其次,一方面引入了2-opt局部优化以及信息素惩罚、奖励机制以改善蚂蚁的搜索能力,另一方面对信息挥发因子作适应性改进以提高蚂蚁的自适应能力;最后,针对基本算法和改进的混合优化算法,仿真实验和平台实验分别进行了性能指标和抓取时间的对比分析。实验结果表明,仿真环境下,与蚁群优化(ACO)算法和禁忌搜索(TS)算法相比,混合优化算法的平均迭代次数降低了约50%,且其他性能较为优越,平台测试的抓取用时测试结果也说明了混合优化算法较随机结果和基本算法的优越性,可以快速完成元件抓取任务。  相似文献   

15.
针对离散布谷鸟算法求解旅行商问题时邻域搜索效率低和易陷入局部最优解等问题,提出了一种自适应动态邻域布谷鸟混合算法(Adaptive Dynamic Neighborhood Hybrid Cuckoo Search algorithm,ADNHCS)。为了提升邻域搜索效率,设计了一种圆限定突变的动态邻域结构来降低经典算法的随机性;此外,提出了可根据迭代过程进行自适应参数调整的策略,并结合禁忌搜索算法来提升全局寻优的能力。使用MATLAB和标准TSPLIB数据库中的若干经典算例对算法性能进行了实验仿真,结果表明与其他基于布谷鸟算法、经典和新型群智能优化算法相比,ADNHCS算法在全局寻优能力以及稳定性方面表现更优。  相似文献   

16.
Here a new model of Traveling Salesman Problem (TSP) with uncertain parameters is formulated and solved using a hybrid algorithm. For this TSP, there are some fixed number of cities and the costs and time durations for traveling from one city to another are known. Here a Traveling Salesman (TS) visits and spends some time in each city for selling the company’s product. The return and expenditure at each city are dependent on the time spent by the TS at that city and these are given in functional forms of t. The total time limit for the entire tour is fixed and known. Now, the problem for the TS is to identify a tour program and also to determine the stay time at each city so that total profit out of the system is maximum. Here the model is solved by a hybrid method combining the Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). The problem is divided into two subproblems where ACO and PSO are used successively iteratively in a generation using one’s result for the other. Numerical experiments are performed to illustrate the models. Some behavioral studies of the models and convergences of the proposed hybrid algorithm with respect to iteration numbers and cost matrix sizes are presented.  相似文献   

17.
一种新的求解TSP问题智能蚁群优化算法   总被引:5,自引:0,他引:5       下载免费PDF全文
提出了一种新的用于求解TSP问题的智能蚁群优化算法。新算法从TSP问题本身出发,提取出了该问题的一种本质特征,并赋予蚁群算法中的精英蚂蚁以识别该固有特征的能力,以提高精英蚂蚁的搜索质量,进而使得新算法整体的求解能力得以提高。文章中不仅阐述了新算法的原理,而且进行了仿真实验,实验结果表明新算法在求解时间和求解质量上都取得了很好的效果。  相似文献   

18.
基于多蚁群的并行ACO算法   总被引:2,自引:0,他引:2       下载免费PDF全文
通过改变蚁群优化(ACO)算法行为,提出一种新的ACO并行化策略——并行多蚁群ACO算法。针对蚁群算法存在停滞现象的缺点,改进选择策略,实现具有自适应并行机制的选择和搜索策略,以加强其全局搜索能力。并行处理采用数据并行的手段,能减少处理器间的通信时间并获得更好的解。以对称TSP测试集为对象进行比较实验,结果表明,该算法相对于串行算法及现有的并行算法具有一定的优势。  相似文献   

19.
模糊离散粒子群优化算法求解旅行商问题   总被引:15,自引:0,他引:15  
粒子群优化算法已经成功地应用于求解连续域问题,但是对于离散域问题特别是路由问题的求解研究还很少.本文提出了一种改进的粒子群优化算法,用于求解旅行商问题.采用模糊矩阵来表示粒子的位置和速度,并重新定义其更新公式,最后对TSPLIB中的具体算例进行测试,实验结果表明该算法能够得到较好的结果.  相似文献   

20.
Congestion in large cities and populated areas is one of the major challenges in urban logistics, and should be addressed at different planning and operational levels. The Time Dependent Travelling Salesman Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the travel times are not assumed to be constant along the day. The motivation to consider the time dependency factor is that it enables to have better approximations to many problems arising from practice. In this paper, we consider the Time-Dependent Traveling Salesman Problem with Time Windows (TDTSP-TW), where the time dependence is captured by considering variable average travel speeds. We propose an Integer Linear Programming model for the problem and develop an exact algorithm, which is compared on benchmark instances with another approach from the related literature. The results show that the approach is able to solve instances with up to 40 customers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号