首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对空中交通管理中的进港航班排序问题, 提出了人工鱼群—粒子群混合算法(AFPSO)这一航班排序算法来优化进港航班排序, 使时段内进港航班队列总延误时间最少。算法结合了基本人工鱼群算法(AFSA)和基本粒子群算法(PSO)各自的优点, 先以AFSA在全局寻找满意的解域, 再以PSO算法在这些解域中进行快速的局部搜索获得精确解, 最终使算法提高收敛速度和搜索精度。仿真结果表明, 在单跑道和双跑道情况下, AFPSO算法使得航班队列总延误时间比FCFS调度方法减少了20. 9%和34. 4%, 比基本AFSA减少了3. 2%和3. 5%。算法得到的满意解能够为自动化空中交通管理提供实时支持。  相似文献   

2.
In recent years, particle swarm optimization (PSO) has extensively applied in various optimization problems because of its simple structure. Although the PSO may find local optima or exhibit slow convergence speed when solving complex multimodal problems. Also, the algorithm requires setting several parameters, and tuning the parameters is a challenging for some optimization problems. To address these issues, an improved PSO scheme is proposed in this study. The algorithm, called non-parametric particle swarm optimization (NP-PSO) enhances the global exploration and the local exploitation in PSO without tuning any algorithmic parameter. NP-PSO combines local and global topologies with two quadratic interpolation operations to increase the search ability. Nineteen (19) unimodal and multimodal nonlinear benchmark functions are selected to compare the performance of NP-PSO with several well-known PSO algorithms. The experimental results showed that the proposed method considerably enhances the efficiency of PSO algorithm in terms of solution accuracy, convergence speed, global optimality, and algorithm reliability.  相似文献   

3.
针对粒子群算法(PSO)存在局部最优及后期收敛速度慢等问题,提出一种改进的变尺度混沌粒子群算法(IMCPSO).该算法初期,在整个解空间对最优粒子进行变尺度混沌扰动,以防止陷入局部最优;算法后期,则以最优粒子为中心引入变尺度混沌扰动,以提高算法收敛速度.当算法一旦陷入局部最优时,采用混沌粒子替代部分种群粒子以增加粒子多样性,使算法尽快跳出局部最优.基于benchmark测试函数的仿真结果表明,所提算法与基本粒子群算法(SPSO)和变尺度混沌粒子群算法(MCPSO)相比,具有明显好的搜索精度和收敛速度.最后,将该算法应用于电路故障诊断实验中的支持向量机参数优化问题,实验结果说明了其应用价值.  相似文献   

4.
标准粒子群算法易陷入局部最优值。根据粒子群算法中的不确定性因素,提出自适应模糊的粒子群优化算法(AFPSO)。在该算法中,对惯性权值和位置更新采用模糊控制,用所有粒子的个体最优的加权平均替代全局最优值,增强了粒子之间相互学习的能力。仿真实验表明,AFPSO算法简单,可灵活地调节全局搜索和局部搜索能力,与已有相关算法比较,较好地解决了粒子群早熟问题,并提高了搜索精度。  相似文献   

5.
一种自适应混合粒子群优化算法及其应用*   总被引:2,自引:0,他引:2  
为提高粒子群算法的寻优精度,提出一种将单纯形法(SM)和粒子群(PSO)算法相结合的自适应混合粒子群优化(AHPSO)算法,该算法根据进化需要动态调整粒子的惯性权重,并在进化停滞时使用SM优化。通过仿真实验证明了AHPSO的寻优性能优于SPSO和SMPSO。将AHPSO用于某航空发动机的PID参数优化,其整定性能优于现有的工业方法和其他PSO算法。  相似文献   

6.
基于概率突跳和模拟退火的改进自适应微粒群算法   总被引:2,自引:0,他引:2  
在两种微粒群算法分析的基础上.针对算法存在局部最优和后期振荡的现象.提出一种改进自适应微粒群算法.新算法引入概率突跳因子改变了原算法中微粒的速度更新公式,引入模拟退火接受准则抑制了概率突跳的不可控制性.典型函数寻优结果表明.新算法能很快地收敛到全局最优解,大幅度降低了达到最优值所需要的迭代数,同时提高了算法的收敛率和收敛精度,在跳出局部搜索的能力上远优于标准微粒群算法和自适应微粒群算法.稳定性好.  相似文献   

7.
Particle swarm optimization (PSO) is a population based algorithm for solving global optimization problems. Owing to its efficiency and simplicity, PSO has attracted many researchers’ attention and developed many variants. Orthogonal learning particle swarm optimization (OLPSO) is proposed as a new variant of PSO that relies on a new learning strategy called orthogonal learning strategy. The OLPSO differs in the utilization of the information of experience from the standard PSO, in which each particle utilizes its historical best experience and globally best experience through linear summation. In OLPSO, particles can fly in better directions by constructing an efficient exemplar through orthogonal experimental design. However, the global version based orthogonal learning PSO (OLPSO-G) still have some drawbacks in solving some complex multimodal function optimization. In this paper, we proposed a quadratic interpolation based OLPSO-G (QIOLPSO-G), in which, a quadratic interpolation based construction strategy for the personal historical best experience is applied. Meanwhile, opposition-based learning, and Gaussian mutation are also introduced into this paper to increase the diversity of the population and discourage the premature convergence. Experiments are conducted on 16 benchmark problems to validate the effectiveness of the QIOLPSO-G, and comparisons are made with four typical PSO algorithms. The results show that the introduction of the three strategies does enhance the effectiveness of the algorithm.  相似文献   

8.
为解决粒子群优化算法易陷入局部最优值的问题,提出一种引入多级扰动的混合型粒子群优化算法.该算法结合两种经典改进粒子群优化算法的优点,即带惯性参数的标准粒子群优化算法和带收缩因子的粒子群优化算法,在此基础上,引入多级扰动机制:在更新粒子位置时,引入一级扰动,使粒子对解空间的遍历能力得到加强;若优化过程陷入“局部最优”的情况,则引入二级扰动,使得优化过程继续,从而摆脱局部最优值.使用了6个测试函数——Sphere函数、Ackley函数、Rastrigin函数、Styblinski-Tang函数、Duadric函数及Rosenbrock函数来对所提出的混合型粒子群优化算法进行仿真运算和对比验证.模拟运算的结果表明:所提出的混合型粒子群优化算法在对测试函数进行仿真时,其收敛精度和收敛速度都优于另外两种经典的改进粒子群优化算法;另外,在处理多峰函数时,本算法不易被局部最优值所限制.  相似文献   

9.
This paper presents a novel improved fuzzy particle swarm optimization (IFPSO) algorithm to the intelligent identification and control of a dynamic system. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight according to particles best memories using a nonlinear fuzzy model. As a result, the IFPSO algorithm has a faster convergence speed and a higher accuracy. The performance of IFPSO algorithm is compared with advanced algorithms such as Real-Coded Genetic Algorithm (RCGA), Linearly Decreasing Inertia Weight PSO (LDWPSO) and Fuzzy PSO (FPSO) in terms of parameter accuracy and convergence speed. Simulation results demonstrate the effectiveness of the proposed algorithm.  相似文献   

10.
Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods.  相似文献   

11.
随机微粒群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
张燕  汪镭  吴启迪 《计算机工程》2006,32(16):9-10,1
微粒群优化算法是继蚁群算法之后又一种新的基于群体智能的启发式全局优化算法,其概念简单、易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。该文结合模拟退火算法的思想,提出了一种改进的微粒群优化算法——随机微粒群优化算法,该算法在运行初期具有更强的探索能力,可以避免群体过早陷入局部极值点。基于典型高维复杂函数的仿真结果表明,与基本微粒群优化算法相比,该混合算法具有更好的优化性能。  相似文献   

12.
LADPSO: using fuzzy logic to conduct PSO algorithm   总被引:5,自引:5,他引:0  
Optimization plays a critical role in human modern life. Nowadays, optimization is used in many aspects of human modern life including engineering, medicine, agriculture and economy. Due to the growing number of optimization problems and their growing complexity, we need to improve and develop theoretical and practical optimization methods. Stochastic population based optimization algorithms like genetic algorithms and particle swarm optimization are good candidates for solving complex problems efficiently. Particle swarm optimization (PSO) is an optimization algorithm that has received much attention in recent years. PSO is a simple and computationally inexpensive algorithm inspired by the social behavior of bird flocks and fish schools. However, PSO suffers from premature convergence, especially in high dimensional multi-modal functions. In this paper, a new method for improving PSO has been introduced. The Proposed method which has been named Light Adaptive Particle Swarm Optimization is a novel method that uses a fuzzy control system to conduct the standard algorithm. The suggested method uses two adjunct operators along with the fuzzy system in order to improve the base algorithm on global optimization problems. Our approach is validated using a number of common complex uni-modal/multi-modal benchmark functions and results have been compared with the results of Standard PSO (SPSO2011) and some other methods. The simulation results demonstrate that results of the proposed approach is promising for improving the standard PSO algorithm on global optimization problems and also improving performance of the algorithm.  相似文献   

13.
Particle swarm optimization (PSO) originated from bird flocking models. It has become a popular research field with many successful applications. In this paper, we present a scheme of an aggregate production planning (APP) from a manufacturer of gardening equipment. It is formulated as an integer linear programming model and optimized by PSO. During the course of optimizing the problem, we discovered that PSO had limited ability and unsatisfactory performance, especially a large constrained integral APP problem with plenty of equality constraints. In order to enhance its performance and alleviate the deficiencies to the problem solving, a modified PSO (MPSO) is proposed, which introduces the idea of sub-particles, a particular coding principle, and a modified operation procedure of particles to the update rules to regulate the search processes for a particle swarm. In the computational study, some instances of the APP problems are experimented and analyzed to evaluate the performance of the MPSO with standard PSO (SPSO) and genetic algorithm (GA). The experimental results demonstrate that the MPSO variant provides particular qualities in the aspects of accuracy, reliability, and convergence speed than SPSO and GA.  相似文献   

14.
Particle swarm optimization (PSO) has recently been extended in several directions. Heterogeneous PSO (HPSO) is one of such recent extensions, which implements behavioural heterogeneity of particles. In this paper, we propose a further extended version, Hierarchcial Heterogeenous PSO (HHPSO), in which heterogeneous behaviors of particles are enforced through interactions among hierarchically structured particles. Two algorithms have been developed and studied: multi-layer HHPSO (ml-HHPSO) and multi-group HHPSO (mg-HHPSO). In each HHPSO algorithm, stagnancy and overcrowding detection mechanisms were implemented to avoid premature convergence. The algorithm performance was measured on a set of benchmark functions and compared with performances of standard PSO (SPSO) and HPSO. The results demonstrated that both ml-HHPSO and mg-HHPSO performed well on all testing problems and significantly outperformed SPSO and HPSO in terms of solution accuracy, convergence speed and diversity maintenance. Further computational experiments revealed the optimal frequencies of stagnation and overcrowding detection for each HHPSO algorithm.  相似文献   

15.
自适应混沌量子粒子群算法及其在WSN覆盖优化中的应用   总被引:1,自引:0,他引:1  
针对传统粒子群优化算法容易陷入局部极值和收敛速度慢等不足,通过研究种群多样性与粒子群算法进化的关系,提出一种动态自适应混沌量子粒子群优化(DACQPSO)算法。该算法将种群分布熵引入粒子群的进化控制,以Sigmoid函数模型为基础,给出了量子粒子群算法收缩扩张系数的计算方法;以平均粒距作为混沌搜索的判别条件进行混沌扰动。将DACQPSO算法应用于无线传感器网络(WSN)的覆盖优化中,并作了仿真分析。实验结果表明,DACQPSO算法在覆盖率指标上比标准粒子群、量子粒子群、混沌量子粒子群算法分别提高了3.3501%、2.6502%和1.9000%,有效地提高了WSN的覆盖性能。  相似文献   

16.
基于锦标赛选择遗传算法的随机微粒群算法   总被引:1,自引:0,他引:1  
以保证全局收敛的随机微粒群算法SPSO为基础。提出了一种改进的随机微粒群算法-GAT-SPSO。该方法是在SPSO的进化过程中.以锦标赛选择机制下的遗传算法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。通过时三个多峰的测试函数进行仿真,其结果表明:在搜索空间维数相同的情况下,GAT-SPSO的收敛率厦收敛速度均大大优于SPSO。  相似文献   

17.
This paper proposes a methodology for automatically extracting T–S fuzzy models from data using particle swarm optimization (PSO). In the proposed method, the structures and parameters of the fuzzy models are encoded into a particle and evolve together so that the optimal structure and parameters can be achieved simultaneously. An improved version of the original PSO algorithm, the cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of PSO. CRPSO employs several sub-swarms to search the space and the useful information is exchanged among them during the iteration process. Simulation results indicate that CRPSO outperforms the standard PSO algorithm, genetic algorithm (GA) and differential evolution (DE) on the functions optimization and benchmark modeling problems. Moreover, the proposed CRPSO-based method can extract accurate T–S fuzzy model with appropriate number of rules.  相似文献   

18.
This article develops an evolutional fuzzy particle swarm optimization (FPSO) learning algorithm to self extract the near optimum codebook of vector quantization (VQ) for carrying on image compression. The fuzzy particle swarm optimization vector quantization (FPSOVQ) learning schemes, combined advantages of the adaptive fuzzy inference method (FIM), the simple VQ concept and the efficient particle swarm optimization (PSO), are considered at the same time to automatically create near optimum codebook to achieve the application of image compression. The FIM is known as a soft decision to measure the relational grade for a given sequence. In our research, the FIM is applied to determine the similar grade between the codebook and the original image patterns. In spite of popular usage of Linde–Buzo–Grey (LBG) algorithm, the powerful evolutional PSO learning algorithm is taken to optimize the fuzzy inference system, which is used to extract appropriate codebooks for compressing several input testing grey-level images. The proposed FPSOVQ learning scheme compared with LBG based VQ learning method is presented to demonstrate its great result in several real image compression examples.  相似文献   

19.
混合型粒子群优化算法研究   总被引:3,自引:1,他引:2  
为了改进粒子群算法的性能,提出了融合其他算法优点的混合型粒子群算法。对三种主流的混合粒子群优化算法(基因粒子群、免疫粒子群、混沌粒子群)分别从混合目的、混合方式、实现步骤、算法优化性能等多个方面进行了研究,给出了这三种混合粒子群算法的优缺点及适用范围。  相似文献   

20.
一种新的位置变异的PSO算法   总被引:3,自引:2,他引:1       下载免费PDF全文
针对标准粒子群优化算法在优化高维复杂函数时易产生早熟收敛的问题,提出一种新的位置变异的PSO算法。为平衡算法的全局和局部搜索能力,新算法按一定概率交替使用随机惯性权重和标准PSO算法的惯性权重;为增强种群多样性和抑制算法早熟,新算法在每次迭代中,对满足一定条件的粒子都进行一种有效脱离局部最优区域的位置变异。最后,通过对5个标准测试函数在60维和90维的性能对比实验证实:新算法收敛精度高,且有效克服了早熟收敛问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号