首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probabilistic latent semantic analysis (PLSA) is a method for computing term and document relationships from a document set. The probabilistic latent semantic index (PLSI) has been used to store PLSA information, but unfortunately the PLSI uses excessive storage space relative to a simple term frequency index, which causes lengthy query times. To overcome the storage and speed problems of PLSI, we introduce the probabilistic latent semantic thesaurus (PLST); an efficient and effective method of storing the PLSA information. We show that through methods such as document thresholding and term pruning, we are able to maintain the high precision results found using PLSA while using a very small percent (0.15%) of the storage space of PLSI.  相似文献   

2.
3.
Recently, there has been an increasing interest in directed probabilistic logical models and a variety of formalisms for describing such models has been proposed. Although many authors provide high-level arguments to show that in principle models in their formalism can be learned from data, most of the proposed learning algorithms have not yet been studied in detail. We introduce an algorithm, generalized ordering-search, to learn both structure and conditional probability distributions (CPDs) of directed probabilistic logical models. The algorithm is based on the ordering-search algorithm for Bayesian networks. We use relational probability trees as a representation for the CPDs. We present experiments on a genetics domain, blocks world domains and the Cora dataset. Editors: Stephen Muggleton, Ramon Otero, Simon Colton.  相似文献   

4.
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.  相似文献   

5.
Appearance models yield a compact representation of shape, pose and illumination variations. The probabilistic appearance model, introduced by Moghaddam et al. (Proceedings of the International Conference on Computer Vision, Cambridge, MA, June 1995, p. 687; IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 696) has recently shown excellent performances in pattern detection and recognition, outperforming most other linear and non-linear approaches. Unfortunately, the complexity of this model remains high. In this paper, we introduce an efficient approximation of this model, which enables fast implementations in statistical estimation-based schemes. Gains in complexity and cpu time of more than 10 have been obtained, without any loss in the quality of the results.  相似文献   

6.
Discriminative subclass models can provide good estimates of complex ‘continuous to discrete’ conditional probabilities for hybrid Bayesian network models. However, the conventional approach of specifying deterministic ‘hard’ subclasses via unsupervised clustering can lead to inaccurate models. The multimodal softmax (MMS) model is presented as a new probabilistic discriminative subclass model that overcomes this unreliability. By invoking fully probabilistic latent ‘soft’ subclasses, MMS permits learning via standard statistical methods without requiring explicit clustering/relabeling of data. MMS is also shown to be closely related to the mixture of experts model and the generative Gaussian mixture classifier. Synthetic and benchmark classification results demonstrate the MMS model’s correctness and usefulness for hybrid probabilistic modeling.  相似文献   

7.
In this paper, we introduce a Bayesian approach, inspired by probabilistic principal component analysis (PPCA) (Tipping and Bishop in J Royal Stat Soc Ser B 61(3):611–622, 1999), to detect objects in complex scenes using appearance-based models. The originality of the proposed framework is to explicitly take into account general forms of the underlying distributions, both for the in-eigenspace distribution and for the observation model. The approach combines linear data reduction techniques (to preserve computational efficiency), non-linear constraints on the in-eigenspace distribution (to model complex variabilities) and non-linear (robust) observation models (to cope with clutter, outliers and occlusions). The resulting statistical representation generalises most existing PCA-based models (Tipping and Bishop in J Royal Stat Soc Ser B 61(3):611–622, 1999; Black and Jepson in Int J Comput Vis 26(1):63–84, 1998; Moghaddam and Pentland in IEEE Trans Pattern Anal Machine Intell 19(7):696–710, 1997) and leads to the definition of a new family of non-linear probabilistic detectors. The performance of the approach is assessed using receiver operating characteristic (ROC) analysis on several representative databases, showing a major improvement in detection performances with respect to the standard methods that have been the references up to now.This revised version was published online in November 2004 with corrections to the section numbers.  相似文献   

8.
This paper addresses automatic image annotation problem and its application to multi-modal image retrieval. The contribution of our work is three-fold. (1) We propose a probabilistic semantic model in which the visual features and the textual words are connected via a hidden layer which constitutes the semantic concepts to be discovered to explicitly exploit the synergy among the modalities. (2) The association of visual features and textual words is determined in a Bayesian framework such that the confidence of the association can be provided. (3) Extensive evaluation on a large-scale, visually and semantically diverse image collection crawled from Web is reported to evaluate the prototype system based on the model. In the proposed probabilistic model, a hidden concept layer which connects the visual feature and the word layer is discovered by fitting a generative model to the training image and annotation words through an Expectation-Maximization (EM) based iterative learning procedure. The evaluation of the prototype system on 17,000 images and 7736 automatically extracted annotation words from crawled Web pages for multi-modal image retrieval has indicated that the proposed semantic model and the developed Bayesian framework are superior to a state-of-the-art peer system in the literature.  相似文献   

9.
Color-based tracking is prone to failure in situations where visually similar targets are moving in a close proximity or occlude each other. To deal with the ambiguities in the visual information, we propose an additional color-independent visual model based on the target's local motion. This model is calculated from the optical flow induced by the target in consecutive images. By modifying a color-based particle filter to account for the target's local motion, the combined color/local-motion-based tracker is constructed. We compare the combined tracker to a purely color-based tracker on a challenging dataset from hand tracking, surveillance and sports. The experiments show that the proposed local-motion model largely resolves situations when the target is occluded by, or moves in front of, a visually similar object.  相似文献   

10.
PRL: A probabilistic relational language   总被引:1,自引:0,他引:1  
In this paper, we describe the syntax and semantics for a probabilistic relational language (PRL). PRL is a recasting of recent work in Probabilistic Relational Models (PRMs) into a logic programming framework. We show how to represent varying degrees of complexity in the semantics including attribute uncertainty, structural uncertainty and identity uncertainty. Our approach is similar in spirit to the work in Bayesian Logic Programs (BLPs), and Logical Bayesian Networks (LBNs). However, surprisingly, there are still some important differences in the resulting formalism; for example, we introduce a general notion of aggregates based on the PRM approaches. One of our contributions is that we show how to support richer forms of structural uncertainty in a probabilistic logical language than have been previously described. Our goal in this work is to present a unifying framework that supports all of the types of relational uncertainty yet is based on logic programming formalisms. We also believe that it facilitates understanding the relationship between the frame-based approaches and alternate logic programming approaches, and allows greater transfer of ideas between them. Editors: Hendrik Blockeel, David Jensen and Stefan Kramer An erratum to this article is available at .  相似文献   

11.
Chord progressions are the building blocks from which tonal music is constructed. The choice of a particular representation for chords has a strong impact on statistical modeling of the dependence between chord symbols and the actual sequences of notes in polyphonic music. Melodic prediction is used in this paper as a benchmark task to evaluate the quality of four chord representations using two probabilistic model architectures derived from Input/Output Hidden Markov Models (IOHMMs). Likelihoods and conditional and unconditional prediction error rates are used as complementary measures of the quality of each of the proposed chord representations. We observe empirically that different chord representations are optimal depending on the chosen evaluation metric. Also, representing chords only by their roots appears to be a good compromise in most of the reported experiments.  相似文献   

12.
Research in models for experience-based trust management has either ignored the problem of modelling and reasoning about dynamically changing principal behaviour, or provided ad hoc solutions to it. Probability theory provides a foundation for addressing this and many other issues in a rigorous and mathematically sound manner. Using Hidden Markov Models to represent principal behaviours, we focus on computational trust frameworks based on the ‘beta’ probability distribution and the principle of exponential decay, and derive a precise analytical formula for the estimation error they induce. This allows potential adopters of beta-based computational trust frameworks and algorithms to better understand the implications of their choice.  相似文献   

13.
We combine some known techniques and results of Turan and Schönhage to improve substantially numerical performance of the computation of the minimum and the maximum distances from a fixed complex point to roots (zeros) of a fixed univariate polynomial.  相似文献   

14.
We introduce the model of Markov nets, a probabilistic extension of safe Petri nets under the true-concurrency semantics—this means that traces, not firing sequences, are given a probability. This model builds upon our previous work on probabilistic event structures. We use the notion of a branching cell for event structures, and show that the latter provides an adequate conception of local state for nets. We prove a Law of Large Numbers (LLN) for Markov nets, which constitutes the main contribution of the paper. This LLN allows for the characterization, in a quantitative way, of the asymptotic behavior of Markov nets.  相似文献   

15.
This article presents an overview of Probabilistic Automata (PA) and discrete Hidden Markov Models (HMMs), and aims at clarifying the links between them. The first part of this work concentrates on probability distributions generated by these models. Necessary and sufficient conditions for an automaton to define a probabilistic language are detailed. It is proved that probabilistic deterministic automata (PDFA) form a proper subclass of probabilistic non-deterministic automata (PNFA). Two families of equivalent models are described next. On one hand, HMMs and PNFA with no final probabilities generate distributions over complete finite prefix-free sets. On the other hand, HMMs with final probabilities and probabilistic automata generate distributions over strings of finite length. The second part of this article presents several learning models, which formalize the problem of PA induction or, equivalently, the problem of HMM topology induction and parameter estimation. These learning models include the PAC and identification with probability 1 frameworks. Links with Bayesian learning are also discussed. The last part of this article presents an overview of induction algorithms for PA or HMMs using state merging, state splitting, parameter pruning and error-correcting techniques.  相似文献   

16.
Proximity searches become very difficult on “high dimensional” metric spaces, that is, those whose histogram of distances has a large mean and/or a small variance. This so-called “curse of dimensionality”, well known in vector spaces, is also observed in metric spaces. The search complexity grows sharply with the dimension and with the search radius. We present a general probabilistic framework applicable to any search algorithm and whose net effect is to reduce the search radius. The higher the dimension, the more effective the technique. We illustrate empirically its practical performance on a particular class of algorithms, where large improvements in the search time are obtained at the cost of a very small error probability.  相似文献   

17.
Objects can exhibit different dynamics at different spatio-temporal scales, a property that is often exploited by visual tracking algorithms. A local dynamic model is typically used to extract image features that are then used as inputs to a system for tracking the object using a global dynamic model. Approximate local dynamics may be brittle—point trackers drift due to image noise and adaptive background models adapt to foreground objects that become stationary—and constraints from the global model can make them more robust. We propose a probabilistic framework for incorporating knowledge about global dynamics into the local feature extraction processes. A global tracking algorithm can be formulated as a generative model and used to predict feature values thereby influencing the observation process of the feature extractor, which in turn produces feature values that are used in high-level inference. We combine such models utilizing a multichain graphical model framework. We show the utility of our framework for improving feature tracking as well as shape and motion estimates in a batch factorization algorithm. We also propose an approximate filtering algorithm appropriate for online applications and demonstrate its application to tasks in background subtraction, structure from motion and articulated body tracking.  相似文献   

18.
In the context of information retrieval (IR) from text documents, the term weighting scheme (TWS) is a key component of the matching mechanism when using the vector space model. In this paper, we propose a new TWS that is based on computing the average term occurrences of terms in documents and it also uses a discriminative approach based on the document centroid vector to remove less significant weights from the documents. We call our approach Term Frequency With Average Term Occurrence (TF-ATO). An analysis of commonly used document collections shows that test collections are not fully judged as achieving that is expensive and maybe infeasible for large collections. A document collection being fully judged means that every document in the collection acts as a relevant document to a specific query or a group of queries. The discriminative approach used in our proposed approach is a heuristic method for improving the IR effectiveness and performance and it has the advantage of not requiring previous knowledge about relevance judgements. We compare the performance of the proposed TF-ATO to the well-known TF-IDF approach and show that using TF-ATO results in better effectiveness in both static and dynamic document collections. In addition, this paper investigates the impact that stop-words removal and our discriminative approach have on TF-IDF and TF-ATO. The results show that both, stop-words removal and the discriminative approach, have a positive effect on both term-weighting schemes. More importantly, it is shown that using the proposed discriminative approach is beneficial for improving IR effectiveness and performance with no information on the relevance judgement for the collection.  相似文献   

19.
Distributed uplink scheduling in OFDMA systems is considered. In the proposed model, mobile terminals have the responsibility of making their own transmission decisions. The proposed scheme is based on two dimensional reservation in time and frequency. Terminals use channel state information in order to favor transmissions over certain subchannels, and transmission is done in a probabilistic manner. The proposed approach provides more autonomy to mobile devices in making transmission decisions. Furthermore, it allows avoiding collisions during transmission since it leads to collision detection during the resource reservation phase. The proposed approach is compared to other random access methods and shown to be superior in terms of increasing sum-rate, reducing the number of users in outage, and reducing the collision probability in the reservation phase.  相似文献   

20.
We study a probabilistic version of coherence spaces and show that these objects provide a model of linear logic. We build a model of the pure lambda-calculus in this setting and show how to interpret a probabilistic version of the functional language PCF. We give a probabilistic interpretation of the semantics of probabilistic PCF closed terms of ground type. Last we suggest a generalization of this approach, using Banach spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号