首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper hybrid flow shop scheduling problem with two agents is studied and its feasibility model is considered. A two-phase neighborhood search (TNS) algorithm is proposed to minimize objectives of two agents simultaneously under the given upper bounds. TNS is constructed through the combination of multiple variable neighborhood mechanisms and a new perturbation strategy for new current solution. A new replacement principle is also applied to decide if the current solution can be updated. TNS is tested on a number of instances and compared with the existing methods. The computational results show the promising advantage of TNS on the considered problem.  相似文献   

2.
This paper proposes a hybrid variable neighborhood search (HVNS) algorithm that combines the chemical-reaction optimization (CRO) and the estimation of distribution (EDA), for solving the hybrid flow shop (HFS) scheduling problems. The objective is to minimize the maximum completion time. In the proposed algorithm, a well-designed decoding mechanism is presented to schedule jobs with more flexibility. Meanwhile, considering the problem structure, eight neighborhood structures are developed. A kinetic energy sensitive neighborhood change approach is proposed to extract global information and avoid being stuck at the local optima. In addition, contrary to the fixed neighborhood set in traditional VNS, a dynamic neighborhood set update mechanism is utilized to exploit the potential search space. Finally, for the population of local optima solutions, an effective EDA-based global search approach is investigated to direct the search process to promising regions. The proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of experimental results, the high performance of the proposed HVNS algorithm is shown in comparison with four efficient algorithms from the literature.  相似文献   

3.
In this paper, we study on the Pharmacy Duty Scheduling (PDS) problem, where a subset of pharmacies should be on duty on national holidays, at weekends and at nights in order to be able to satisfy the emergency drug needs of the society. PDS problem is a multi-period p-median problem with special side constraints and it is an NP-Hard problem. We propose four Variable Neighborhood Search (VNS) heuristics. The first one is the basic version, BVNS. The latter two, Variable Neighborhood Decomposition Search (VNDS) and Variable Neighborhood Restricted Search (VNRS), aim to obtain better results in less computing time by decomposing or restricting the search space. The last one, Reduced VNS (RVNS), is for obtaining good initial solutions rapidly for BVNS, VNDS and VNRS. We test BVNS, VNRS and VNDS heuristics on randomly generated instances and report the computational test results. We also use VNS heuristics on real data for the pharmacies in central İzmir and obtain significant improvements.  相似文献   

4.
The focus of this paper is generalized traveling repairman problem (TRP), a special case of the well known and well studied traveling salesman problem (TSP). Because of its specific objective function, that minimizes the sum of overall time all clients wait for until the end of a service, TRP has great applicability potential in client oriented practical problems. Therefore it has been known in literature as traveling deliveryman problem, minimum latency problem and cumulative capacitated vehicle routing problem. However, most studies that have treated TRP related problems have implied that only one repairman is present in the system and/or that all clients are available for service at the beginning of the planning horizon. In this paper we consider a TRP with a heterogeneous fleet of repairmen serving a set of clients whose arrival times are distributed over a planning horizon, i.e. heterogeneous TRPTW (hetTRPTW). For the hetTRPTW we present a mixed integer linear programming model, and a heuristic algorithm based on a variable neighborhood search (VNS) framework. Additionally, we propose a reduction strategy for neighborhoods in the VNS algorithm and test efficiency of implemented algorithms on four benchmark sets of problem instances. Results show that proposed algorithms could be used in real systems for solving small and moderate problem instances.  相似文献   

5.
结合和声搜索和变邻域搜索算法的特点,提出混合的和声变邻域搜索算法,并将混合算法用于解决多处理机独立任务调度问题.混合算法采用列表调度方法对和声解进行编码,把和声分量转换为基于优先级的独立任务调度模型,利用变邻域搜索算法对和声解进行局部搜索以提高和声算法的搜索效率和解质量,利用模拟退火算法中的Metropolis准则作为新解接受准则,防止算法陷入局部极值.仿真实验对比结果表明,混合算法在解决独立任务的多处理机调度中具有更强的全局搜索能力和更快的收敛速度,并且能够跳出局部极小获得更高质量的解.  相似文献   

6.
This paper addresses the flexible job shop scheduling problem (fJSP) with three objectives: min makespan, min maximal machine workload and min total workload. We developed a hybrid genetic algorithm (GA) for the problem. The GA uses two vectors to represent solutions. Advanced crossover and mutation operators are used to adapt to the special chromosome structure and the characteristics of the problem. In order to strengthen the search ability, individuals of GA are first improved by a variable neighborhood descent (VND), which involves two local search procedures: local search of moving one operation and local search of moving two operations. Moving an operation is to delete the operation, find an assignable time interval for it, and allocate it in the assignable interval. We developed an efficient method to find assignable time intervals for the deleted operations based on the concept of earliest and latest event time. The local optima of moving one operation are further improved by moving two operations simultaneously. An extensive computational study on 181 benchmark problems shows the performance of our approach.  相似文献   

7.
Efficient task scheduling on heterogeneous distributed computing systems (HeDCSs) requires the consideration of the heterogeneity of processors and the inter-processor communication. This paper presents a two-phase algorithm, called H2GS, for task scheduling on HeDCSs. The first phase implements a heuristic list-based algorithm, called LDCP, to generate a high quality schedule. In the second phase, the LDCP-generated schedule is injected into the initial population of a customized genetic algorithm, called GAS, which proceeds to evolve shorter schedules. GAS employs a simple genome composed of a two-dimensional chromosome. A mapping procedure is developed which maps every possible genome to a valid schedule. Moreover, GAS uses customized operators that are designed for the scheduling problem to enable an efficient stochastic search. The performance of each phase of H2GS is compared to two leading scheduling algorithms, and H2GS outperforms both algorithms. The improvement in performance obtained by H2GS increases as the inter-task communication cost increases.  相似文献   

8.
Multi-agent scheduling in flow shop environment is seldom considered. In this paper flow shop scheduling problem with two agents is studied and its feasibility model is considered, in which the goal is to minimize the makespan of the first agent and the total tardiness of the second agent simultaneously under the given upper bounds. A simple variable neighborhood search (VNS) algorithm is proposed, in which a learning neighborhood structure is constructed to produce new solutions and a new principle is applied to decide if the current solution can be replaced with the new one. VNS is tested on a number of instances and the computational results show the promising advantage of VNS when compared to other algorithms of the problem.  相似文献   

9.
This paper proposes an effective hybrid tabu search algorithm (HTSA) to solve the flexible job-shop scheduling problem. Three minimization objectives – the maximum completion time (makespan), the total workload of machines and the workload of the critical machine are considered simultaneously. In this study, a tabu search (TS) algorithm with an effective neighborhood structure combining two adaptive rules is developed, which constructs improved local search in the machine assignment module. Then, a well-designed left-shift decoding function is defined to transform a solution to an active schedule. In addition, a variable neighborhood search (VNS) algorithm integrating three insert and swap neighborhood structures based on public critical block theory is presented to perform local search in the operation scheduling component. The proposed HTSA is tested on sets of the well-known benchmark instances. The statistical analysis of performance comparisons shows that the proposed HTSA is superior to four existing algorithms including the AL + CGA algorithm by Kacem, Hammadi, and Borne (2002b), the PSO + SA algorithm by Xia and Wu (2005), the PSO + TS algorithm by Zhang, Shao, Li, and Gao (2009), and the Xing’s algorithm by Xing, Chen, and Yang (2009a) in terms of both solution quality and efficiency.  相似文献   

10.
Cell formation problem attempts to group machines and part families in dedicated manufacturing cells such that the number of voids and exceptional elements in cells are minimized. In this paper, we presented a linear fractional programming model with the objective of maximizing the grouping efficacy while the number of cells is unknown. To show the effectiveness of the proposed model, two test problems were applied. Then, to solve the model for real-sized applications, a hybrid meta-heuristic algorithm in which genetic algorithm and variable neighborhood search are combined. Using the grouping efficacy measure, we have also compared the performance of the proposed algorithm on a set of 35 test problems from the literature. The results show that the proposed GA-VNS method outperforms the state-of-the-art algorithms.  相似文献   

11.
Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature.  相似文献   

12.
李静梅  张博  王雪 《计算机应用研究》2012,29(10):3621-3624
为提高异构多处理器任务调度的执行效率,充分发挥多处理器并行性能,提出一种基于粒子群优化的异构多处理器任务调度算法——FPSOTTS算法。该算法以求得任务最短完成时间为目标,首先通过建立新的编码方式和粒子更新公式实现粒子搜索空间到离散空间的映射,使连续的粒子群优化算法适用于离散的异构多处理器任务调度问题;同时通过引入禁忌算法进行局部搜索,克服粒子群算法的早熟收敛现象,避免陷入局部最优。实验结果表明,FPSOTTS算法的执行效率优于Min-min算法和遗传算法,有效地降低任务的执行时间。FP-SOTTS算法很好地解决了异构多处理器任务调度问题,并且适合于大规模并行任务调度。  相似文献   

13.
This paper investigates the limited-buffer permutation flow shop scheduling problem (LBPFSP) with the makespan criterion. A hybrid variable neighborhood search (HVNS) algorithm hybridized with the simulated annealing algorithm is used to solve the problem. A method is also developed to decrease the computational effort needed to implement different types of local search approaches used in the HVNS algorithm. Computational results show the higher efficiency of the HVNS algorithm as compared with the state-of-the-art algorithms. In addition, the HVNS algorithm is competitive with the algorithms proposed in the literature for solving the blocking flow shop scheduling problem (i.e., LBPFSP with zero-capacity buffers), and finds 54 new upper bounds for the Taillard's benchmark instances.  相似文献   

14.
In this paper, we deal with multiprocessor task scheduling with ready times and prespecified processor allocation. We consider an on‐line scenario where tasks arrive over time, and, at any point in time, the scheduler only has knowledge of the released tasks. An application of this problem arises in wavelength division multiplexing broadcasting where the main future will be in the so‐called one‐to‐many transmission. We propose algorithms to find lower bounds of the minimum makespan, and present experiments on various scenarios.  相似文献   

15.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. FJSP is NP-hard and mainly presents two difficulties. The first one is to assign each operation to a machine out of a set of capable machines, and the second one deals with sequencing the assigned operations on the machines. This paper proposes a parallel variable neighborhood search (PVNS) algorithm that solves the FJSP to minimize makespan time. Parallelization in this algorithm is based on the application of multiple independent searches increasing the exploration in the search space. The proposed PVNS uses various neighborhood structures which carry the responsibility of making changes in assignment and sequencing of operations for generating neighboring solutions. The results obtained from the computational study have shown that the proposed algorithm is a viable and effective approach for the FJSP.  相似文献   

16.
Dynamic job shop scheduling that considers random job arrivals and machine breakdowns is studied in this paper. Considering an event driven policy rescheduling, is triggered in response to dynamic events by variable neighborhood search (VNS). A trained artificial neural network (ANN) updates parameters of VNS at any rescheduling point. Also, a multi-objective performance measure is applied as objective function that consists of makespan and tardiness. The proposed method is compared with some common dispatching rules that have widely used in the literature for dynamic job shop scheduling problem. Results illustrate the high effectiveness and efficiency of the proposed method in a variety of shop floor conditions.  相似文献   

17.
为合理利用多处理器资源,对任务调度算法进行研究,针对现有任务调度算法在任务规模较大的情况下全局寻优能力方面的不足,提出基于禁忌搜索的多处理器任务调度算法。对任务图不设任何约束条件,利用基于任务复制的TDS算法产生高质量的初始调度以降低算法复杂度,利用禁忌搜索算法全局寻优得到最优调度。实验结果表明,该算法可以有效降低任务调度长度,减少所需处理器数目。  相似文献   

18.
In this paper, we propose a method about task scheduling and data assignment on heterogeneous hybrid memory multiprocessor systems for real‐time applications. In a heterogeneous hybrid memory multiprocessor system, an important problem is how to schedule real‐time application tasks to processors and assign data to hybrid memories. The hybrid memory consists of dynamic random access memory and solid state drives when considering the performance of solid state drives into the scheduling policy. To solve this problem, we propose two heuristic algorithms called improvement greedy algorithm and the data assignment according to the task scheduling algorithm, which generate a near‐optimal solution for real‐time applications in polynomial time. We evaluate the performance of our algorithms by comparing them with a greedy algorithm, which is commonly used to solve heterogeneous task scheduling problem. Based on our extensive simulation study, we observe that our algorithms exhibit excellent performance and demonstrate that considering data allocation in task scheduling is significant for saving energy. We conduct experiments on two heterogeneous multiprocessor systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
针对离散布谷鸟算法求解旅行商问题时邻域搜索效率低和易陷入局部最优解等问题,提出了一种自适应动态邻域布谷鸟混合算法(Adaptive Dynamic Neighborhood Hybrid Cuckoo Search algorithm,ADNHCS)。为了提升邻域搜索效率,设计了一种圆限定突变的动态邻域结构来降低经典算法的随机性;此外,提出了可根据迭代过程进行自适应参数调整的策略,并结合禁忌搜索算法来提升全局寻优的能力。使用MATLAB和标准TSPLIB数据库中的若干经典算例对算法性能进行了实验仿真,结果表明与其他基于布谷鸟算法、经典和新型群智能优化算法相比,ADNHCS算法在全局寻优能力以及稳定性方面表现更优。  相似文献   

20.
张彬连  徐洪智 《计算机应用》2013,33(10):2787-2791
随着多处理器系统计算性能的提高,能耗管理已变得越来越重要,如何满足实时约束并有效降低能耗成为实时调度中的一个重要问题。基于多处理器计算系统,针对随机到达的任务,提出一种在线节能调度算法(OLEAS)。该算法在满足任务截止期限的前提下,尽量将任务调度到产生能耗最少的处理器,当某个任务在所有处理器上都不能满足截止期限要求时,则调整处理器之间的部分任务,使之尽量满足截止期限要求。同时,OLEAS尽量使单个处理器上的任务按平均电压/频率执行,以降低能耗,只有当新到任务不满足截止期限要求时,才逐个调高前面任务的电压/频率。模拟实验比较了OLEAS、最早完成时间优先(EFF)、最高电压节能(HVEA)、最低电压节能(LVEA)、贪心最小能耗(MEG)和最小能耗最小完成时间(ME-MC)的性能,结果表明OLEAS在满足任务截止期限和节省能耗方面具有明显的综合优势  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号