首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo develop a classifier that tackles the problem of determining the risk of a patient of suffering from a cardiovascular disease within the next 10 years. The system has to provide both a diagnosis and an interpretable model explaining the decision. In this way, doctors are able to analyse the usefulness of the information given by the system.MethodsLinguistic fuzzy rule-based classification systems are used, since they provide a good classification rate and a highly interpretable model. More specifically, a new methodology to combine fuzzy rule-based classification systems with interval-valued fuzzy sets is proposed, which is composed of three steps: (1) the modelling of the linguistic labels of the classifier using interval-valued fuzzy sets; (2) the use of the Kα operator in the inference process and (3) the application of a genetic tuning to find the best ignorance degree that each interval-valued fuzzy set represents as well as the best value for the parameter α of the Kα operator in each rule.ResultsThe suitability of the new proposal to deal with this medical diagnosis classification problem is shown by comparing its performance with respect to the one provided by two classical fuzzy classifiers and a previous interval-valued fuzzy rule-based classification system. The performance of the new method is statistically better than the ones obtained with the methods considered in the comparison. The new proposal enhances both the total number of correctly diagnosed patients, around 3% with respect the classical fuzzy classifiers and around 1% vs. the previous interval-valued fuzzy classifier, and the classifier ability to correctly differentiate patients of the different risk categories.ConclusionThe proposed methodology is a suitable tool to face the medical diagnosis of cardiovascular diseases, since it obtains a good classification rate and it also provides an interpretable model that can be easily understood by the doctors.  相似文献   

2.
The paper presents a multi-objective genetic approach to design interpretability-oriented fuzzy rule-based classifiers from data. The proposed approach allows us to obtain systems with various levels of compromise between their accuracy and interpretability. During the learning process, parameters of the membership functions, as well as the structure of the classifier's fuzzy rule base (i.e., the number of rules, the number of rule antecedents, etc.) evolve simultaneously using a Pittsburgh-type genetic approach. Since there is no particular coding of fuzzy rule structures in a chromosome (it reduces computational complexity of the algorithm), original crossover and mutation operators, as well as chromosome-repairing technique to directly transform the rules are also proposed. To evaluate both the accuracy and interpretability of the system, two measures are used. The first one – an accuracy measure – is based on the root mean square error of the system's response. The second one – an interpretability measure – is based on the arithmetic mean of three components: (a) the average length of rules (the average number of antecedents used in the rules), (b) the number of active fuzzy sets and (c) the number of active inputs of the system (an active fuzzy set or input means a set or input used by at least one fuzzy rule). Both measures are used as objectives in multi-objective (2-objective in our case) genetic optimization approaches such as well-known SPEA2 and NSGA-II algorithms. Moreover, for the purpose of comparison with several alternative approaches, the experiments are carried out both considering the so-called strong fuzzy partitions (SFPs) of attribute domains and without them. SFPs provide more semantically meaningful solutions, usually at the expense of their accuracy. The operation of the proposed technique in various classification problems is tested with the use of 20 benchmark data sets and compared to 11 alternative classification techniques. The experiments show that the proposed approach generates classifiers of significantly improved interpretability, while still characterized by competitive accuracy.  相似文献   

3.
Credit classification is an important component of critical financial decision making tasks such as credit scoring and bankruptcy prediction. Credit classification methods are usually evaluated in terms of their accuracy, interpretability, and computational efficiency. In this paper, we propose an approach for automatic designing of fuzzy rule-based classifiers (FRBCs) from financial data using multi-objective evolutionary optimization algorithms (MOEOAs). Our method generates, in a single experiment, an optimized collection of solutions (financial FRBCs) characterized by various levels of accuracy-interpretability trade-off. In our approach we address the complexity- and semantics-related interpretability issues, we introduce original genetic operators for the classifier's rule base processing, and we implement our ideas in the context of Non-dominated Sorting Genetic Algorithm II (NSGA-II), i.e., one of the presently most advanced MOEOAs. A significant part of the paper is devoted to an extensive comparative analysis of our approach and 24 alternative methods applied to three standard financial benchmark data sets, i.e., Statlog (Australian Credit Approval), Statlog (German Credit Approval), and Credit Approval (also referred to as Japanese Credit) sets available from the UCI repository of machine learning databases (http://archive.ics.uci.edu/ml). Several performance measures including accuracy, sensitivity, specificity, and some number of interpretability measures are employed in order to evaluate the obtained systems. Our approach significantly outperforms the alternative methods in terms of the interpretability of the obtained financial data classifiers while remaining either competitive or superior in terms of their accuracy and the speed of decision making.  相似文献   

4.
Context adaptation (CA) based on evolutionary algorithms is certainly a promising approach to the development of fuzzy rule-based systems (FRBSs). In CA, a context-free model is instantiated to a context-adapted FRBS so as to increase accuracy. A typical requirement in CA is that the context-adapted system maintains the same interpretability as the context-free model, a challenging constraint given that accuracy and interpretability are often conflicting objectives. Furthermore, interpretability is difficult to quantify because of its very nature of being a qualitative concept. In this paper, we first introduce a novel index based on fuzzy ordering relations in order to provide a measure of interpretability. Then, we use the proposed index and the mean square error as goals of a multi-objective evolutionary algorithm aimed at generating a set of Pareto-optimum context-adapted Mamdani-type FRBSs with different trade-offs between accuracy and interpretability. CA is obtained through the use of specifically designed operators that adjust the universe of the input and output variables, and modify the core, the support and the shape of fuzzy sets characterizing the partitions of these universes. Finally, we show results obtained by using our approach on synthetic and real data sets.  相似文献   

5.
Fuzzy Rule-Based Systems, FRBSs, are powerful tools to address regression problems. They can model the relationship between inputs and outputs by linguistic concepts. However, those FRBSs which are based on the conventional Type-1 fuzzy sets may not be able to handle some difficulties of real-world applications. In such situations, using novel representations of fuzzy sets seems like a good idea. Different extensions of fuzzy sets usually help to provide more precise models in the real-world problems. In this study, the influence of using fuzzy extensions in improving the efficiency of linguistic fuzzy rule-based regression models is investigated. For this purpose, a conventional Type-1 Mamdani FRBS is adapted to the three extensions of fuzzy sets, namely Interval Type-2, Intuitionistic, and Interval Type-2 Intuitionistic fuzzy sets. A two-pass method is proposed to define membership (non-membership) functions of these fuzzy sets; this method is based on the 3-tuples representation of the standard Type-1 membership functions. Wang and Mendel’s rule learning method is adapted to extract fuzzy rules from regression data. In order to tune the membership functions up to different extents, three evolutionary extensions are also presented for each type of the proposed FRBSs. Individual, internal, and external comparisons of the proposed FRBSs were done using 22 real-world regression datasets and statistical tests. Experimental results confirm that all the three proposed FRBSs outperform the classical Type-1 framework; furthermore, the Interval Type-2 Intuitionistic FRBS is the superior system so that an appropriate tuning of its parameters makes it the most accurate model.  相似文献   

6.
Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users.The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem.We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.  相似文献   

7.
In this paper we propose GP-COACH, a Genetic Programming-based method for the learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems. GP-COACH learns disjunctive normal form rules (generated by means of a context-free grammar) coded as one rule per tree. The population constitutes the rule base, so it is a genetic cooperative-competitive learning approach. GP-COACH uses a token competition mechanism to maintain the diversity of the population and this obliges the rules to compete and cooperate among themselves and allows the obtaining of a compact set of fuzzy rules. The results obtained have been validated by the use of non-parametric statistical tests, showing a good performance in terms of accuracy and interpretability.  相似文献   

8.
Fuzzy interpolative reasoning is an important research topic of sparse fuzzy rule-based systems. In recent years, some methods have been presented for dealing with fuzzy interpolative reasoning. However, the involving fuzzy sets appearing in the antecedents of fuzzy rules of the existing fuzzy interpolative reasoning methods must be normal and non-overlapping. Moreover, the reasoning conclusions of the existing fuzzy interpolative reasoning methods sometimes become abnormal fuzzy sets. In this paper, in order to overcome the drawbacks of the existing fuzzy interpolative reasoning methods, we present a new fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the ranking values of fuzzy sets. The proposed fuzzy interpolative reasoning method can handle the situation of non-normal and overlapping fuzzy sets appearing in the antecedents of fuzzy rules. It can overcome the drawbacks of the existing fuzzy interpolative reasoning methods in sparse fuzzy rule-based systems.  相似文献   

9.
This study follows the direct approach to image contrast enhancement, which changes the image contrast at each its pixel and is more effective than the indirect approach that deals with image histograms. However, there are only few studies following the direct approach because, by its nature, it is very complex. Additionally, it is difficult to develop an effective method since it is required to keep a balance in maintaining local and global image features while changing the contrast at each individual pixel. Moreover, raw images obtained from many sources randomly influenced by many external factors can be considered as fuzzy uncertain data. In this context, we propose a novel method to apply and immediately handle expert fuzzy linguistic knowledge of image contrast enhancement to simulate human capability in using natural language. The formalism developed in the study is based on hedge algebras considered as a theory, which can immediately handle linguistic words of variables. This allows the proposed method to produce an image contrast intensificator from a given expert linguistic rule base. A technique to preserve global as well as local image features is proposed based on a fuzzy clustering method, which is applied for the first time in this field to reveal region image features of raw images. The projections of the obtained clusters on each channel are suitably aggregated to produce a new channel image considered as input of the pixelwise defined operators proposed in this study. Many experiments are performed to demonstrate the effect of the proposed method versus the counterparts considered.  相似文献   

10.
Multi-objective evolutionary algorithms represent an effective tool to improve the accuracy-interpretability trade-off of fuzzy rule-based classification systems. To this aim, a tuning process and a rule selection process can be combined to obtain a set of solutions with different trade-offs between the accuracy and the compactness of models. Nevertheless, an initial model needs to be defined, in particular the parameters that describe the partitions and the number of fuzzy sets of each variable (i.e. the granularities) must be determined. The simplest approach is to use a previously established single granularity and a uniform fuzzy partition for each variable. A better approach consists in automatically identifying from data the appropriate granularities and fuzzy partitions, since this usually leads to more accurate models.This contribution presents a fuzzy discretization approach, which is used to generate automatically promising granularities and their associated fuzzy partitions. This mechanism is integrated within a Multi-Objective Fuzzy Association Rule-Based Classification method, namely D-MOFARC, which concurrently performs a tuning and a rule selection process on an initial knowledge base. The aim is to obtain fuzzy rule-based classification systems with high classification performances, while preserving their complexity.  相似文献   

11.
In computing with words (CWW), knowledge is linguistically represented and has an explicit semantics defined through fuzzy information granules. The linguistic representation, in turn, naturally bears an implicit semantics that belongs to users reading the knowledge base; hence a necessary condition for achieving interpretability requires that implicit and explicit semantics are cointensive. Interpretability is definitely stringent when knowledge must be acquired from data through inductive learning. Therefore, in this paper we propose a methodology for designing interpretable fuzzy models through semantic cointension. We focus our analysis on fuzzy rule-based classifiers (FRBCs), where we observe that rules resemble logical propositions, thus semantic cointension can be partially regarded as the fulfillment of the “logical view”, i.e. the set of basic logical laws that are required in any logical system. The proposed approach is grounded on the employment of a couple of tools: DCf, which extracts interpretable classification rules from data, and Espresso, that is capable of fast minimization of Boolean propositions. Our research demonstrates that it is possible to design models that exhibit good classification accuracy combined with high interpretability in the sense of semantic cointension. Also, structural parameters that quantify model complexity show that the derived models are also simple enough to be read and understood.  相似文献   

12.
Transparency, accuracy, compactness and reliability all appear to be vital (even though somewhat contradictory) requirements when it comes down to linguistic fuzzy modeling. This paper presents a methodology for simultaneous optimization of these criteria by chaining previously published various algorithms - a heuristic fully automated identification algorithm that is able to extract sufficiently accurate, yet reliable and transparent models from data and two algorithms for subsequent simplification of the model that are able to reduce the number of output parameters as well as the number of fuzzy rules with only a marginal negative effect to the accuracy of the model.  相似文献   

13.
14.
Linguistic intuitionistic fuzzy numbers (LIFNs), characterized by a linguistic membership degree, linguistic non-membership degree, and linguistic indeterminacy degree, represent a helpful tool for depicting uncertain information under complex environments. This paper focuses on developing an innovative method to address multi-criteria decision-making (MCDM) problems with LIFNs in which the weight information is completely unknown. First, the distance of LIFNs is defined with the aid of linguistic scale functions (LSFs). Second, some extended outranking relationships between each pair of LIFNs are proposed based on the elicitation of the classic relation models. Moreover, a ranking method is constructed to deal with MCDM problems according to the proposed outranking relationships of LIFNs. Finally, an illustrative example concerning coal mine safety evaluation is provided to demonstrate the proposed method, and its feasibility and validity are further verified by a sensitivity analysis and comparison with other existing methods.  相似文献   

15.
模糊规则模型广泛应用于许多领域,而现有的模糊规则模型主要使用基于数值形式的性能评估指标,忽略了对于模糊集合本身的评价,因此提出了一种模糊规则模型性能评估的新方法。该方法可以有效地评估模糊规则模型输出结果的非数值(粒度)性质。不同于通常使用的数值型性能指标(比如均方误差(MSE)),该方法通过信息粒的特征来表征模型输出的粒度结果的质量,并将该指标使用在模糊模型的性能优化中。信息粒性能采用(数据的)覆盖率和(信息粒自身的)特异性两个基本指标得以量化,并通过使用粒子群优化实现了粒度输出质量(表示为覆盖率和特异性的乘积)的最大化。此外,该方法还优化了模糊聚类形成的信息粒的分布。实验结果表明该指标对于模糊规则模型性能评估的有效性。  相似文献   

16.
The aim of this work is to propose a hybrid heuristic approach (called hGA) based on genetic algorithm (GA) and integer-programming formulation (IPF) to solve high dimensional classification problems in linguistic fuzzy rule-based classification systems. In this algorithm, each chromosome represents a rule for specified class, GA is used for producing several rules for each class, and finally IPF is used for selection of rules from a pool of rules, which are obtained by GA. The proposed algorithm is experimentally evaluated by the use of non-parametric statistical tests on seventeen classification benchmark data sets. Results of the comparative study show that hGA is able to discover accurate and concise classification rules.  相似文献   

17.
 Linguistic fuzzy control is introduced in a pure logical framework. The problem of learning of the linguistic rule base from the data obtained by monitoring of successful control and the problem of learning the linguistic context are studied. The methods are demonstrated by results of experiments. Supported by the grant No. 201/96/0985 of the GAČR and the project VS96037 of MŠMT of the Czech Republic.  相似文献   

18.
In this paper, we examine the classification performance of fuzzy if-then rules selected by a GA-based multi-objective rule selection method. This rule selection method can be applied to high-dimensional pattern classification problems with many continuous attributes by restricting the number of antecedent conditions of each candidate fuzzy if-then rule. As candidate rules, we only use fuzzy if-then rules with a small number of antecedent conditions. Thus it is easy for human users to understand each rule selected by our method. Our rule selection method has two objectives: to minimize the number of selected fuzzy if-then rules and to maximize the number of correctly classified patterns. In our multi-objective fuzzy rule selection problem, there exist several solutions (i.e., several rule sets) called “non-dominated solutions” because two conflicting objectives are considered. In this paper, we examine the performance of our GA-based rule selection method by computer simulations on a real-world pattern classification problem with many continuous attributes. First we examine the classification performance of our method for training patterns by computer simulations. Next we examine the generalization ability for test patterns. We show that a fuzzy rule-based classification system with an appropriate number of rules has high generalization ability.  相似文献   

19.
Abstract

In this paper we test a hypothesis that has shown promise in enhancing the efficiency ( run-time) of rule-based systems. The results of our experiments suggest that the use of rule activation plays an active part in improving the performance of rule bases containing conflict sets.  相似文献   

20.
This paper presents a novel learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems. Since only the back-propagation method has been proposed in the literature for the tuning of both the antecedent and the consequent parameters of type-2 fuzzy logic systems, a hybrid learning algorithm has been developed. The hybrid method uses a recursive orthogonal least-squares method for tuning the consequent parameters and the back-propagation method for tuning the antecedent parameters. Systems were tested for three types of inputs: (a) interval singleton, (b) interval type-1 non-singleton, and (c) interval type-2 non-singleton. Experiments were carried out on the application of hybrid interval type-2 fuzzy logic systems for prediction of the scale breaker entry temperature in a real hot strip mill for three different types of coil. The results proved the feasibility of the systems developed here for scale breaker entry temperature prediction. Comparison with type-1 fuzzy logic systems shows that hybrid learning interval type-2 fuzzy logic systems provide improved performance under the conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号