首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anadequate supply of N for a crop depends among others on the amounts of N thataremineralized from the soil organic matter plus the supply of ammonium andnitrateN already present in the soil. The objective of this study was to determine thebehaviour of light fraction organic N (LFN), NH4-N, NO3-Nand total N (TN) in soil in response to different rates of fertilizer Napplication. The 0–5, 5–10, 10–15 and 15–30cm layers of a thin Black Chernozemic soil under bromegrass(Bromus inermis Leyss) at Crossfield, Alberta, Canada,weresampled after 27 annual applications of ammonium nitrate at rates of 0, 56,112,168, 224 and 336 kg N ha–1. The concentration andmass of TN and LFN in the soil, and the proportion of LFN mass within the TNmass usually increased with N rates up to 224 kg Nha–1. The increase in TN mass and LFN mass per unit ofNadded was generally maximum at 56 kg N ha–1 anddeclined with further increases in the rate of N application. The percentchangein response to N application was much greater for the LFN mass than for the TNmass for all the N rates and all soil depths that were sampled. Mineral N intheform of NH4-N and NO3-N did not accumulate in the soil at 112 kg N ha–1 rates, whereas theiraccumulation increased markedly with rates of 168 kg Nha–1. In conclusion, long-term annual fertilization at 112 kg N ha–1 to bromegrass resulted insubstantial increase in the TN and LFN in soil, with no accumulation ofNH4-N and NO3-N down the depth. The implication of thesefindings is that grasslands for hay can be managed by appropriate Nfertilization rates to increase the level of organic N in soil.  相似文献   

2.
Confined microplots were used to study the fate of15N-labelled ammonium nitrate and urea when applied to ryegrass in spring at 3 lowland sites (S1, S2 and S3). Urea and differentially and doubly labelled ammonium nitrate were applied at 50 and 100 kg N ha–1. The % utilization of the15N-labelled fertilizer was measured in 3 cuts of herbage and in soil to a depth of 15 cm (soil0–15).Over all rates, forms and sites, the % utilization values for cuts 1, 2, 3 and soil0–15 were 52.4, 5.3, 2.4 and 16.0% respectively. The % utilization of15N in herbage varied little as the rate of application increased but the % utilization in the soil0–15 decreased as the rate of application increased. The total % utilization values in herbage plus soil0–15 indicated that losses of N increased from 12 to 25 kg N ha–1 as the rate of N application was increased from 50 to 100 kg N ha–1.The total % utilization values in herbage plus soil0–15 over both rates of fertilizer N application were 84.1, 80.8 and 81.0% for urea compared with 74.9, 72.5 and 74.4% for all ammonium nitrate forms at S1, S2 and S3 respectively. Within ammonium nitrate forms, the total % utilization values in herbage plus soil0–15 over both rates and all sites were 76.7, 69.4 and 75.7% for15NH4NO3, NH4 15NO3 and15NH4 15NO3 respectively. The utilization of the nitrate moiety of ammonium nitrate was lower than the utilization of the ammonium moiety.The distribution of labelled fertilizer between herbage and soil0–15 varied with soil type. As the total utilization of labelled fertilizer was similar at all sites the cumulative losses due to denitrification and downward movement appeared to account for approximately equal amounts of N at each site.  相似文献   

3.
Information on the fate and distribution of surface-applied fertilizer P and K in soil is needed in order to assess their availability to plants and potential for water contamination. Distribution of extractable P (in 0.03 M NH4F + 0.03 M H2SO4 solution) and exchangeable K (in neutral 1.0 M ammonium acetate solution) in the soil as a result of selected combinations of 30 years (1968–1997) of N fertilization (84–336 kg N ha–1), 10 years of P fertilization (0–132 kg P ha–1), and 14 years of K fertilization (0 and 46 kg K ha–1) was studied in a field experiment on a thin Black Chernozem loam under smooth bromegrass (Bromus inermis Leyss.) at Crossfield, Alberta, Canada. Soil samples were taken at regular intervals in October 1997 from 0–5, 5–10, 10–15, 15–30, 30–60, 60–90 and 90–120 cm layers. Soil pH decreased with N rate and this declined with soil depth. Increase in extractable P concentration in the soil reflected 10 years of P fertilization relative to no P fertilization, even though it had been terminated 20 years prior to soil sampling. The magnitude and depth of increase in extractable P paralleled N and P rates. The extractable P concentration in the 0–5 cm soil layer increased by 2.2, 20.7, 30.4 and 34.5 mg P kg–1 soil at 84, 168, 280 and 336 kg N ha–1, respectively. The increase in extractable P concentration in the 0–15 cm soil depth was 1.5 and 12.8 mg P kg–1 soil with application of 16 and 33 kg P ha–1 (N rate of 84 N ha–1 for both treatments), respectively; and it was 81.6 and 155.2 mg P kg–1 soil with application of 66 and 132 kg P ha–1 (N rate of 336 N ha–1 for both treatments), respectively. The increase in extractable P at high N rates was attributed to N-induced soil acidification. Most of the increase in extractable P occurred in the top 10-cm soil layer and almost none was noticed below 30 cm depth. Surface-applied K was able to prevent depletion of exchangeable K from the 0–90 cm soil, which occurred with increased bromegrass production from N fertilization in the absence of K application. As only a small increase of exchangeable K was observed in the 10–30 cm soil, 46 kg K ha–1 year–1 was considered necessary to achieve a balance between fertilization and bromegrass uptake for K. The potential for P contamination of surface water may be increased with the high N and P rates, as most of the increase in extractable P occurred near the soil surface.  相似文献   

4.
A greenhouse experiment was conducted to compare the effectiveness of blue-green algae (Anabaena flos aquae) produced in a simulated inorganic-wastewater medium and NH4NO3 as sources of N for bermudagrass (Cynodon dactylon L.) on a Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudult).15N-labeled blue-green algae and15N-labeled NH4NO3 were used as N sources to supply up to 300 mg N per pot (3 kg of soil). Bermudagrass was clipped at 42, 63, and 102 d after planting and dry matter yield, total, and15N were determined at each clipping. Results indicated a highly significant increase in total dry matter (shoots and roots) and N uptake over the control for both algae and NH4NO3 treatments at all N rates. There were no significant effects of N source on bermudagrass yields, but total N uptake was significantly higher with NH4NO3. The net mineralization of N from blue-green algal biomass ranged from 36 to 59% of the total N applied and the corresponding net release for NH4NO3 ranged from 65 to 86%. From 29 to 54% of the total N applied as blue-green algal biomass and from 50 to 75% of the N applied as NH4NO3 were assimilated by bermudagrass plants. For N rates above 100 mg N pot–1, higher proportions of the labeled N in the shoots of the third harvest were derived from algal biomass than from NH4NO3. A large portion of the labeled N remained undecomposed or immobilized in the algae treated soil (41–64%) as compared to NH4NO3 treated soil (14–35%). More loss of N occurred in the NH4NO3 treatments from 3 to 15%, while the corresponding figures for algae treated soil were 2 to 8%.  相似文献   

5.
The micrometeorological mass balance method was used to measure ammonia (NH3) volatilization from rotationally grazed swards throughout the 1987 and 1988 growing seasons. In both years the swards were dressed with calcium ammonium nitrate (CAN) split over 7 dressings. In 1987 the sward received a total of 550 kg N ha–1, in 1988 a total of 550 or 250 kg N ha–1. For the 550 kg N ha–1 treatments there were 8 and 9 grazing cycles, respectively, in 1987 and 1988 and 7 for the 250 kg N ha–1 treatment. Losses from the 550 N sward were 42.2 and 39.2 kg N ha–1 in 1987 and 1988, respectively; this was equivalent to 8.5 and 7.7% of the N returned to the sward in the excreta of the grazing cattle. The NH3 loss from the 250N sward was 8.1 kg N ha–1 in 1988, which was equivalent to 3.1% of the N returned to the sward in excreta during the growing season. There was a wide variation in NH3 volatilization between the individual grazing periods. This indicates the necessity of continued measurements throughout the growing season to obtain reliable data on NH3 volatilization. Soil humidity is suggested to be a key factor, because emissions were high from wet soil, and low from drier soil. Results of a Monte Carlo simulation study showed that the measured NH3 loss from the 250 and 550 N swards had a standard deviation of 13 and 5% of the mean, respectively.  相似文献   

6.
Environmental problems associated with raw manure application might bemitigated by chemically or biologically immobilizing and stabilizing solublephosphorus (P) forms. Composting poultry litter has been suggested as a means tostabilize soluble P biologically. The objectives of this study were to assessthe nutrient (N, P) value of different-age poultry litter (PL) compostsrelativeto raw poultry litter and commercial fertilizer and determine effects ofpoultrylitter and composts on corn (Zea mays) grain yield andnutrient uptake. The research was conducted for two years on Maryland'sEastern Shore. Six soil fertility treatments were applied annually to aMatapeake silt loam soil (Typic Hapludult): (1) a check without fertilizer, (2)NH4NO3 fertilizer control (168 kg Nha–1), (3) raw poultry litter (8.9 Mgha–1), (4) 15-month old poultry litter compost (68.7Mg ha–1), (5) 4-month old poultry litter compost(59 Mg ha–1) and (6) 1-month old poultry littercompost (64 Mg ha–1). We monitored changes inavailable soil NO3-N and P over the growing season and post harvest.We measured total aboveground biomass at tasseling and harvest and corn yield.We determined corn N and P uptake at tasseling.Patterns of available soil NO3-N were similar between raw PL-and NH4NO3 fertilizer-amended soils. LittleNO3-N was released from any of the PL composts in the first year ofstudy. The mature 15-month old compost mineralized significant NO3-Nonly after the second year of application. In contrast, available soil P washighest in plots amended with 15-month old compost, followed by raw PL-amendedplots. Immature composts immobilized soil P in the first year of study. Cornbiomass and yields were 30% higher in fertilizer and raw PL amendedplotscompared to yields in compost-amended treatments. Yields in compost-amendedplots were greater than those in the no-amendment control plots. Corn N and Puptake mirrored patterns of available soil NO3-N and P. Corn Puptakewas highest in plots amended with 15-month old compost and raw PL, even thoughother composts contained 1.5–2 times more total P than raw PL. There wasalinear relationship between amount of P added and available soil P, regardlessof source. The similar P availabilities from either raw or composted PL,coupledwith limited crop P uptake at high soil P concentrations, suggest that raw andcomposted PL should be applied to soils based on crop P requirements to avoidbuild-up of available soil P.  相似文献   

7.
Chemical interactions between soil N and alkaline-hydrolysing N fertilizers labelled with15N were studied in the laboratory using twelve-irradiated soils. Fertilizer was recovered in the soil organic N fraction via the process of NH3 fixation. NH3 fixation at day 7 varied from 1.8 to 4.6% of the N added as aqua ammonia at 1000 mg kg–1 soil. The amount of NH3 fixed increased with increasing rates of application of NH3(aq) and urea. The rate of NH3 fixation decreased with time, with more than 55% of the total NH3 fixation in 28 days occurring in the first week following application of 2000 mg urea-N kg–1 soil. Soil pH and NH3 fixation varied in response to N source, and increased in the order of di-ammonium phosphate 3 fixation, resulting in the release of unlabelled ammonium (deamination) and a real added nitrogen interaction in all but two of the soils studied. The release of NH 4 + initially increased up to a pH of 7.5, was inhibited between pH 8.5 and 9.0, but increased thereafter. The balance (Nbal) between NH3 fixation and deamination was either positive or negative, depending on the pH of the fertilized soil, which was directly related to N source and concentration for a given soil.  相似文献   

8.
The effect of a nitrification inhibitor on the accumulation of ammonium (NH 4 + -N) and nitrate (NO 3 - -N) in the profile was investigated in two field experiments in Canterbury, New Zealand after the ploughing of a 4-year old ryegrass/white clover pasture in early (March) and late autumn (May). Nitrate leaching over the winter, and yield and N uptake of a following wheat crop were also assessed.The accumulation of N in the soil profile by the start of winter was greater in the March fallow (76–140 kg N ha–1) than in the May fallow treatment (36–49 kg N ha–1). The nitrification inhibitor dicyandiamide (DCD) did not affect the extent of net N mineralization, but it inhibited nitrification when applied to pasture before ploughing, especially at its depth of incorporation (100–200 mm). Nitrification inhibition in spring was greater when DCD was applied in May rather than in March due to its reduced degradation over the winter.Cumulative nitrate leaching losses were substantial from the March fallow treatment in both years (about 100 kg N ha–1). A delay in the cultivation of pasture and the application of DCD both reduced nitrate leaching losses. When leaching occurred early in the winter (in 1991), losses were less when pasture was cultivated in May (2 kg N ha–1) than when DCD was applied to pasture cultivated in March (68 kg N ha–1). When leaching occurred late in the winter (in 1992), similar losses were measured from pasture cultivated in May (49 kg N ha–1) and from DCD-treated pasture cultivated in March (57 kg N ha–1).Grain harvest yield and N uptake of the following spring wheat crop were generally unaffected by the size of the N leaching loss over the winter. This was due to the high N fertility of the soil after four years of a grazed leguminous pasture.  相似文献   

9.
Nutrient management recommendations are needed to increase nitrogen uptake efficiency, minimize nutrient losses and reduce adverse effects on the environment. A study of the effects of nitrogen fertilization on N losses and fruit yield of 6-yr-old Valencia sweet orange (Citrus sinensis (L.) Osb.) on Rangpur lime rootstock (C. limonia Osb.) grove was conducted in an Alfisol in Brazil from 1996 to 2001. Urea (UR) or ammonium nitrate (AN) fertilizers were surface-applied annually at rates of 20, 100, 180, and 260 kg N ha–1 split into three applications from mid-spring to early fall. A semi-open trapping system, using H3PO4 + glycerol-soaked plastic foams, was used for selected treatments in the field to evaluate NH3 volatilized from applied N fertilizers. Ammonia volatilization reached 26 to 44% of the N applied as UR at the highest rate of N used. Ammonia volatilization losses with AN were lower (4% of the N applied). On the other hand, AN resulted in greater nitrate leaching and greater soil acidification than UR. A marked effect of AN fertilizer on soil pH (CaCl2) in the 0–20 cm depth layer was observed with a decrease of up to 1.7 pH units at the highest N rate. Acidification was followed by a decrease in exchangeable Ca and Mg; consequently, after 5 yr of fertilization with AN, soil base saturation dropped from 77% in the plots treated with 20 kg N ha–1 per year, to 24% in those that received 260 kg N ha–1 per year. The effect of N sources on fruit yield varied from year to year. In 2001, for a calculated N application rate of 150 kg ha–1, the fertilizer efficiency index of UR was 75% of that of AN.  相似文献   

10.
Two greenhouse experiments were conducted with strawberries (Fragaria ananassa) grown in plastic pots filled with 12 kg of soil, and irrigated by drip to evaluate the effect of 3 N levels and 3 N sources. The N levels were 3.6, 7.2 or 10.8 mmol Nl–1 and the N sources were urea, ammonium nitrate and potassium nitrate for supplying NH4/NO3 in mmol Nl–1 ratios of 7/0, 3.5/3.5 or 0/7, respectively. Both experiments were uniformly supplied with micronutrients and 1.7 and 5.0 mmoll–1 of P and K, respectively. The fertilizers were supplied through the irrigation stream with every irrigation. The highest yield was obtained with the 7.2 mmol Nl–1 due to increase in both weight and number of fruits per plant. With this N concentration soil ECe and NO3-N concentration were kept at low levels. Total N and NO3-N in laminae and petioles increased with increasing N level. With the N sources the highest yield was obtained with urea due to better fruit setting. The N source had no effect on soil salinity and residual soil NO3-N; residual NH4-N in the soils receiving urea and ammonium nitrate were at low levels.  相似文献   

11.
A field experiment was conducted to determine the effects of surface applications of dairy shed effluent (DSE) (effluent collected from a dairy milking shed and consists of dung, urine and water) or chemical fertilizer (NH4Cl) on N dynamics, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) in different soil depths. The DSE and NH4Cl were applied to pasture soil at an equivalent rate of 200 kg N ha–1in May and November 1996, as autumn and late spring applications, respectively. Soil samples taken from different soil depths following the autumn application were analyzed for inorganic N, microbial biomass C and N and enzyme activities, while soil samples taken following the late spring application were analyzed for inorganic N only. The soil NH4 +concentration, soluble organic C, protease, deaminase and urease activities, and microbial biomass C and N significantly increased in the 0–5 cm soil depth soon after the application of DSE. During the first 30 days, the soluble organic C, microbial C and N and protease activity also increased in the 10–20 cm, while there was no such increase in deaminase and urease activities below 10 cm soil depth. After day 30, the microbial and enzyme activities decreased in the surface as well as in the sub-surface layers possibly due to the exhaustion of the available carbon substrates but remained higher compared to the NH4Cl and control. The NH4Cl application, due to lack of organic substrates, had no effect on soluble organic C, protease or urease activities and biomass C. However, it did increase the deaminase activity and microbial biomass N. The NO3 concentration in lower soil depths of NH4Cl treated soils was significantly higher than those in the DSE and control. This indicates that possible NO3 leaching were more after NH4Cl addition than after DSE. N applied in autumn had higher potential for leaching than that applied in late spring because of increased drainage, lower pasture growth and N uptake during the winter period. Being a source of organic N, DSE showed better performance in maintaining higher pasture yield and N uptake than the NH4Cl and the control. Pasture yield and N uptake were always higher following the spring application than the autumn application because of the optimal environmental condition during summer. These results showed that soil treated with DSE had higher enzyme activities and microbial biomass than soil treated with chemical fertilizers and this may result in longer availability of N for plant uptake and reduce the risk of N leaching losses.  相似文献   

12.
Experiments were conducted in paddy fields at Shiga and Chiba Prefectures to study the effects of controlled-release coated urea (N-LP100) on soil microbial biomass and N uptake of rice plants by the 15N-tracer technique, during one cropping season. Three field fertilizer treatments (Zero N: 0 kgN ha–1, 15N-LP100: 64 kg N ha–1 and 15NH4Cl: 100 kg N ha–1) were set-up in the Shiga field experiment. After transplanting in the paddy fields at Shiga and Kashiwa (Chiba), a number of rice hills with standard growth were selected randomly and enclosed by polyacryl-plastic frames designated as microplots. 15N-LP100 (64 kg N ha–1) was applied in the Shiga and Kashiwa microplot experiments and the Shiga field experiment as deep-side placement (5 cm away from rice hill and 5 cm soil depth). Total N uptake of rice plants was analyzed in the course of plant growth. In addition, soils from the field fertilizer treatment plots and microplots (divided into 11 blocks) were taken and analyzed for microbial biomass N (BN) and biomass 15N (B15N). The results indicated that; (1) Plant N uptake from basal-applied fertilizers at the end of the study in the Shiga field experiment was 71.9 and 26.0% for 15N-LP100 and 15NH4Cl, respectively. In the Kashiwa microplot experiment, plant N uptake from applied 15N-LP100 was 51.2% at 67 days after transplanting (DAT) (2) Throughout the cropping season, BN was the highest, intermediate and the lowest for 15NH4Cl, 15N-LP100 and Zero N field experimental plots in the Shiga experiment, respectively. (3) In the micro-plot experiments, BN and B15N were generally higher in the soil block with deep-side application of 15N-LP100 compared with the other soil blocks. The deep-side placement of 15N-LP100 ensured a high efficiency of utilization of its N by rice plants. The method of 15N-LP100-placement also affected the spatial heterogeneity of microbial biomass N in the microplots.  相似文献   

13.
The effect of soil clay mineralogy on the efficiency of (NH4)2SO4 in flooded rice was investigated in a greenhouse pot trial with four clayey soils of diverse clay mineralogies (x-ray amorphous, montmorillonite, vermiculite, beidellite). KCl (75 kg K ha–1) and triple superphosphate (25 kg P ha–1) were incorporated in the soil with and without (NH4)2SO4 (100 kg N ha–1) before transplanting 1-week-old IR-36 rice seedlings which were then grown to maturity under flooded conditions. Efficiency of (NH4)2SO4 was inferred from the response of agronomic characteristics such as tiller number, height, grain and straw yields to NH4 fertilization.The results showed greatest efficiency of (NH4)2SO4 on the x-ray amorphous soil, followed by montmorillonitic soil; efficiency was much lower on the vermiculitic and negligible on the beidellitic soil.Soil clay mineralogy may be an important factor in the reduced efficiency of NH4 (or NH4-forming) fertilizers in certain rice soils.  相似文献   

14.
Nitrification inhibitors such a dicyandiamide (DCD) help to reduce leaching losses by retaining applied N in the ammoniacal form. Research objectives were to evaluate dicyandiamide added to ammonium sulphate-nitrate (ASN) as a nitrification inhibitor in cultivated soils (Xeropsamments) and its effect on N uptake by citrus (Citrus sinensis (L.) Osbeck). Under field conditions, fertilization of adult trees with ASN (600 g N tree–1) either with or without DCD (2% DCD-N) was compared (ASN+DCD and ASN, respectively). The NH 4 + -N concentrations in plots fertilized with ASN+DCD were significantly higher than ASN plot in the 0-15 cm layer during 5–105 day period. Nitrification started immediately after N application in both treatments (ASN and ASN+DCD). In all three soil layers analyzed, NO 3-N concentrations were higher in the ASN plots than in the ASN+DCD during the first 20 days. This indicates that nitrification of NH+ 4 from ASN was more rapid in the absence of DCD. On the other hand, fertilization with ASN+DCD kept higher levels of NO 3-N in soils than ASN during the rest of experience period (40–160 days). Addition of DCD to ASN showed a higher N concentration in the spring-flush leaves with respect to the trees fertilized with ASN, during the growth cycle. These results suggest that the use of a nitrification inhibitor permitted a more efficient utilization of fertilizer N by citrus trees. The plants treated with DCD added to ASN showed a higher yield in number of units per tree and a better fruit colour index than those treated with ASN alone.  相似文献   

15.
Grazed pastures emit ammonia (NH3) into the atmosphere; the size of the NH3 loss appears to be related to nitrogen (N) application rate.The micrometeorological mass balance method was used to measure NH3 volatilization from rotationally grazed swards on three plots in the autumn of 1989 and throughout the 1990 growing season. The aim of the research was to derive a mathematical relationship between NH3 volatilization and N application rate, which would vary between soil type and weather conditions. In both years the plots received a total of 250, 400 or 550 kg N ha–1 as calcium ammonium nitrate (CAN) split over 6 to 8 dressings. The number of grazing cycles ranged from 7 to 9 for the three N plots.In the last two grazing cycles of 1989, NH3 losses were 3.8, 12.0 and 14.7 kg N ha–1 for the 250N, 400N and 550N plots, which was equivalent to 5.3%, 13.9% and 14.4% of the amount of N excreted on the sward, respectively. In 1990, NH3 losses were 9.1, 27.0 and 32.8 kg N ha–1 for the 250N, 400N and 550N plots, which was equivalent to 3.3%, 6.9% and 6.9% of the N excreted, respectively. Differences in urine composition between the plots were relatively small. Rainfall and sward management affected the size of the NH3 volatilization rate. Volatilization of NH3 was related to N excretion and N application rate.A calculation procedure is given to enable the estimation of NH3 volatilization from N application rate. Adjustments can be made for grazing efficiency, grazing selectivity, N retention in milk and liveweight gain, concentrate N intake and milking duration. Losses of NH3 increase progressively with an increase in N application rate until herbage yield reaches a maximum at an application rate of about 500 kg N ha–1 yr–1.  相似文献   

16.
Nitrous oxide (N2O) emissions were measured over two years from an intensively managed grassland site in the UK. Emissions from ammonium nitrate (AN) and urea (UR) were compared to those from urea modified by various inhibitors (a nitrification inhibitor, UR(N), a urease inhibitor, UR(U), and both inhibitors together, SU), as well as a controlled release urea (CR). N2O fluxes varied through time and between treatments. The differences between the treatments were not consistent throughout the year. After the spring and early summer fertilizer applications, fluxes from AN plots were greater than fluxes from UR plots, e.g. the cumulative fluxes for one month after N application in June 1999 were 5.2 ± 1.1 kg N2O-N ha–1 from the AN plots, compared to 1.4 ± 1.0 kg N2O-N ha–1 from the UR plots. However, after the late summer application, there was no difference between the two treatments, e.g. cumulative fluxes for the month following N application in August 2000 were 3.3 ± 0.7 kg N2O-N ha–1 from the AN plots and 2.9 ± 1.1 kg N2O-N ha–1 from the UR plots. After all N applications, fluxes from the UR(N) plots were much less than those from either the AN or the UR plots, e.g. 0.2 ± 0.1 kg N2O-N ha–1 in June 1999 and 1.1 ± 0.3 kg N2O-N ha–1 in August 2000. Combining the results of this experiment with earlier work showed that there was a greater N2O emission response to rainfall around the time of fertilizer application in the AN plots than in the UR plots. It was concluded that there is scope for reducing N2O emissions from N-fertilized grassland by applying UR instead of AN to wet soils in cool conditions, e.g. when grass growth begins in spring. Applying UR with a nitrification inhibitor could cut emissions further.  相似文献   

17.
Use of15N-depleted fertilizer materials have been primarily limited to fertilizer recovery studies of short duration. The objective of this study was to determine if15N-depleted fertilizer N could be satisfactorily used as a tracer of residual fertilizer N in plant tissue and various soil N fractions through a corn (Zea mays L.) -winter rye (Secale cereale L.) crop rotation. Nitrogen as15N-depleted (NH4)2SO4 was applied at five rates (0, 84, 168, 252, and 336 kg N ha–1) to corn. Immediately following corn harvest a winter rye cover crop treatment was initiated. Residual fertilizer N was easily detected in the soil NO 3 - -N fraction following corn harvest (140-d after application). Low levels of exchangeable NH 4 + -N (<2.5 mg kg–1) did not permit accurate isotope-ratio analysis. Fertilizer-derived N recovered in the soil total N fraction following corn harvest was detectable in the 0 to 30-cm depth at each N rate and in the 30 to 60 and 60 to 90-cm depths at the 336 kg ha–1 N rate. Atom %15N concentrations in the nonexchangeable NH 4 + -N fraction did not differ from the control at each N rate. Nitrogen recovery by the winter rye cover crop reduced residual soil NO 3 - -N levels below the 10 kg ha–1 level needed for accurate isotope-ratio analysis. Atom %15N concentrations in the soil total N fraction (approximately one yr after application) were indistinguishable from the control plots below the 168, 252, and 336 kg ha–1 N rate at the 0 to 30, 30 to 60, and 60 to 90-cm depths, respectively. Recovery of residual fertilizer N by the winter rye cover crop was verified by measuring significant decreases in atom %15N concentrations in rye tissue with increasing N rates. The greatest limitation to the use of15N-depleted fertilizer N as a tracer of residual fertilizer N in a corn-rye crop rotation appears to be its detectibility from native soil N in the total N pool.Research partially supported by grants from the National Fertilizer and Environmental Research Center/TVA and the Virginia Division of Soil and Water Conservation.  相似文献   

18.
Tropical soils are important sources of nitrous oxide (N2O) and nitric oxide (NO) emissions from the Earths terrestrial ecosystems. Clearing of tropical rainforest for pasture has the potential to alter N2O and NO emissions from soils by altering moisture, nitrogen supply or other factors that control N oxide production. In this review we report annual rates of N2O and NO emissions from forest and pastures of different ages in the western Brazilian Amazon state of Rondônia and examine how forest clearing alters the major controls of N oxide production. Forests had annual N2O emissions of 1.7 to 4.3 kg N ha-1 y-1 and annual NO emissions of 1.4 kg N ha-1 y-1. Young pastures of 1–3 years old had higher N2O emissions than the original forest (3.1–5.1 kg N ha-1 y-1) but older pastures of 6 years or more had lower emissions (0.1 to 0.4 kg N ha-1 y-1). Both soil moisture and indices of soil N cycling were relatively poor predictors of N2O, NO and combined N2O + NO emissions. In forest, high N2O emissions occurred at soil moistures above 30 water-filled pore space, while NO emissions occurred at all measured soil moistures (18–43). In pastures, low N availability led to low N2O and NO emissions across the entire range of soil moistures. Based on these patterns and results of field fertilization experiments, we concluded that: (1) nitrification was the source of NO from forest soils, (2) denitrification was not a major source of N2O production from forest soils or was not limited by NO- supply, (3) denitrification was a major source of N2O production from pasture soils but only when NO3- was available, and (4) nitrification was not a major source of 3 NO production in pasture soils. Pulse wettings after prolonged dry periods increased N2O and NO3- emissions for only short periods and not enough to appreciably affect annual emission rates. We project that Basin-wide, the effect of clearing for pasture in the future will be a small reduction in total N2O emissions if the extensive pastures of the Amazon continue to be managed in a way similar to current practices. In the future, both N2Oand NO fluxes could increase if uses of pastures change to include greater use of N fertilizers or N-fixing crops. Predicting the consequences of these changes for N oxide production will require an understanding of how the processes of nitrification and denitrification interact with soil type and regional moisture regimes to control N2O and NO production from these new anthropogenic N sources.  相似文献   

19.
Interactions between15N-labelled fertilizers applied at concentrations representative of the fertilizer microsite and the solubility of the nitrogenous component of soil organic matter were investigated in laboratory experiments. Soil organic N was solubilized in a-irradiated soil due to addition of NH3(aq), and the fertilizer-induced loss of unlabelled total N in the extracted soil (TUs) increased with increasing N fertilizer concentration and soil pH. TUs was linearly correlated with ammoniacal-N concentration and the pH of the fertilized soil within the range of 7.5-10 (r = 0.94).Total organic N in the soil extract (OTe) increased rapidly up to day 14 following addition of 2000 mg urea-N kg–1 soil, but was then stable up to day 28. OTe of a range of soils increased from between 5 and 148 to between 15 and 368 mg N kg–1 soil after application of 1045 mg NH3-N kg–1 soil. While up to 25% of the organic N was solubilized by the fertilizer in nine soils, the change in total organic N in the extracts (OTe) of three soils was not significant. The highest OTe of 399 mg N kg–1 soil (35.4% of soil organic N) was measured after application of 2000 mg NH3-N kg–1 soil.pH and OTe decreased in the order of NH3(aq) > urea > di-ammonium phosphate > ammonium sulphate at equivalent rates of N addition. A negative OTe was measured following application of ammonium sulphate. OTe was correlated with the pH of the fertilized soil but not ammoniacal-N concentration for different N fertilizer sources.  相似文献   

20.
A field study was initiated to investigate the influence of application time on the disposition of 100 kg N ha–1 applied as15N-labelled NaNO3 and (NH4)2SO4 to a silty clay soil (a ustic eutropept) under sugarcane (Saccharum hybrid sp.) in Mauritius. The results showed that the vertical and lateral distribution of residual fertilizer N remaining in the soil 2 years after fertilization was not influenced by the chemical nature of N used nor by the time of application. On account of rapid biological immobilization more than 50% of the residual N in the soil remained in the surface 15-cm layer and less than 30% of fertilizer N had moved laterally more than 30 cm away from the zone of fertilization. There was however more residual fertilizer N in the soil when the N was applied in September (23 kg N ha–1) than in December (16 kg N ha–1) because fertilizer N applied during the active sugarcane growth in December was used more efficiently than similar applications in September when growth was slow. The present study provides further evidence to substantiate that N leaching is not of significant concern in soils located in a tropical environment similar to that of Mauritius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号