首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Our goal was to assess whether visual motion signals related to changes in image velocity contribute to pursuit eye movements. We recorded the smooth eye movements evoked by ramp target motion at constant speed. In two different kinds of stimuli, the onset of target motion provided either an abrupt, step change in target velocity or a smooth target acceleration that lasted 125 ms followed by prolonged target motion at constant velocity. We measured the eye acceleration in the first 100 ms of pursuit. Because of the 100-ms latency from the onset of visual stimuli to the onset of smooth eye movement, the eye acceleration in this 100-ms interval provides an estimate of the open-loop response of the visuomotor pathways that drive pursuit. 2. For steps of target velocity, eye acceleration in the first 100 ms of pursuit depended on the "motion onset delay," defined as the interval between the appearance of the target and the onset of motion. If the motion onset delay was > 100 ms, then the initial eye movement consisted of separable early and late phases of eye acceleration. The early phase dominated eye acceleration in the interval from 0 to 40 ms after pursuit onset and was relatively insensitive to image speed. The late phase dominated eye acceleration in the interval 40-100 ms after the onset of pursuit and had an amplitude that was proportional to image speed. If there was no delay between the appearance of the target and the onset of its motion, then the early component was not seen, and eye acceleration was related to target speed throughout the first 100 ms of pursuit. 3. For step changes of target velocity, the relationship between eye acceleration in the first 40 ms of pursuit and target velocity saturated at target speeds > 10 degrees /s. In contrast, the relationship was nearly linear when eye acceleration was measured in the interval 40-100 ms after the onset of pursuit. We suggest that the first 40 ms of pursuit are driven by a transient visual motion input that is related to the onset of target motion (motion onset transient component) and that the next 60 ms are driven by a sustained visual motion input (image velocity component). 4. When the target accelerated smoothly for 125 ms before moving at constant speed, the initiation of pursuit resembled that evoked by steps of target velocity. However, the latency of pursuit was consistently longer for smooth target accelerations than for steps of target velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.  相似文献   

3.
People remember moving objects as having moved farther along in their path of motion than is actually the case; this is known as representational momentum (RM). Some authors have argued that RM is an internalization of environmental properties such as physical momentum and gravity. Five experiments demonstrated that a similar memory bias could not have been learned from the environment. For right-handed Ss, objects apparently moving to the right engendered a larger memory bias in the direction of motion than did those moving to the left. This effect, clearly not derived from real-world lateral asymmetries, was relatively insensitive to changes in apparent velocity and the type of object used, and it may be confined to objects in the left half of visual space. The left–right effect may be an intrinsic property of the visual operating system, which may in turn have affected certain cultural conventions of left and right in art and other domains. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
A flight simulator was used for two experiments to determine the amplitude combinations of visual scene motion (with respect to the observer) and inertial body motion (with respect to an earth-fixed frame) that provide the perception of an earth-stationary visual scene and realistic simulated self-motion. In the first experiment, this range was determined for simulated self-motion about the longitudinal body axis, while in the second, self-motion about the vertical body axis was considered. Both the inertial and the visual motions consisted of 0.75 a accelerations, followed by 1.50 s decelerations, and 0.75 s accelerations. The visual scene acceleration amplitude, W, was fixed at either 0, 2, 4, 8, or 12 degrees/s2 while the inertial acceleration amplitude, I, was varied by a staircase procedure. Following the visual and inertial motions, the subjects pushed a button when they perceived the scene to be not earth-stationary. At each visual scene acceleration amplitude, the lower and upper inertial threshold amplitudes were determined, which bounded the range in which the visual scene was perceived to be earth-stationary. The lower and upper inertial thresholds were defined as the inertial motion amplitudes for which the inertial stimulations were too small or too large, respectively, to provide the perception of an earth-stationary visual scene. The lower inertial thresholds were determined for W = 2 through W = 12 degrees/s2 and were found to be well approximated by the linear relation I = -0.37 + 0.60 W for the roll motions tested, and I = 1.1 + 0.33 W for the yaw motions tested. The upper inertial thresholds were determined for W = 0 through W = 12 degrees/s2 and were found to be well approximated by the linear relation I = 2.7 + 1.7 W for roll and I = 2.2 + 1.4 W for yaw. With the assumption that the lower and upper inertial threshold amplitudes are symmetric about the W = 0 condition, the present results infer a strong nonlinearity of the thresholds near W = 0.  相似文献   

5.
As a step toward understanding the mechanism by which targets are selected for smooth-pursuit eye movements, we examined the behavior of the pursuit system when monkeys were presented with two discrete moving visual targets. Two rhesus monkeys were trained to select a small moving target identified by its color in the presence of a moving distractor of another color. Smooth-pursuit eye movements were quantified in terms of the latency of the eye movement and the initial eye acceleration profile. We have previously shown that the latency of smooth pursuit, which is normally around 100 ms, can be extended to 150 ms or shortened to 85 ms depending on whether there is a distractor moving in the opposite or same direction, respectively, relative to the direction of the target. We have now measured this effect for a 360 deg range of distractor directions, and distractor speeds of 5-45 deg/s. We have also examined the effect of varying the spatial separation and temporal asynchrony between target and distractor. The results indicate that the effect of the distractor on the latency of pursuit depends on its direction of motion, and its spatial and temporal proximity to the target, but depends very little on the speed of the distractor. Furthermore, under the conditions of these experiments, the direction of the eye movement that is emitted in response to two competing moving stimuli is not a vectorial combination of the stimulus motions, but is solely determined by the direction of the target. The results are consistent with a competitive model for smooth-pursuit target selection and suggest that the competition takes place at a stage of the pursuit pathway that is between visual-motion processing and motor-response preparation.  相似文献   

6.
Previously, Y. Jiang, P. Greenwood, and R. Parasuraman (1999) reported that priming of rotating three-dimensional visual objects is age sensitive. The current study investigated whether there is also an age-related difference in priming with simple two-dimensional (2-D) moving stimuli (i.e., whether a prime stimulus moving in a particular direction causes a subsequent ambiguous target stimulus to be seen moving in the same direction as the prime). In 2 experiments, younger and older adults judged the directions of moving sine-wave gratings. Groups differed neither in determining the direction of a single 2-D movement nor in detecting motion reversals in successively moving gratings. However, the older group showed a significant reduction in the extent of 2-D motion priming. The decrement in older adults for visual motion priming may reflect age-related changes in temporal processing in human visual cortex. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Spatial and temporal analysis of contrast-modulated sine-wave gratings reveals that the second-order motion stimulus contains two sidebands, with equal energy but moving in opposite directions, flanking a stationary carrier. Any early linear spatial filtering process in the visual system that attenuates one sideband more than the other will be detrimental to the balance between the two sidebands, so that the perceived direction of the carrier might be opposite to that of the envelope motion. We tested this hypothesis by using contrast-modulated gratings presented centrally or at 20 deg in the horizontal nasal field with a two-alternative forced-choice staircase paradigm. We found that when the envelope frequency was close to that of the carrier, a second-order stimulus whose envelope motion direction was correctly identified in the fovea appeared to drift in the opposite direction in the periphery. Further increasing the envelope spatial frequency resulted in a reversed motion percept in both central and peripheral viewing conditions. For subjects to identify correctly the direction of motion of the envelope, the spatial frequency ratio of the carrier to the envelope had to be more than 2 in the fovea and more than 6 in the periphery. These phenomena in second-order motion perception can be explained by a linear model of motion detection with an early spatial filtering process. Further experiments and computer simulation show that undersampling of the carrier has little effect on second-order motion perception in the periphery, as long as the carrier is detectable.  相似文献   

8.
Knowledge of precise head kinematics during whiplash trauma is important for identifying possible injury mechanisms and their prevention. This study reports a comprehensive data set describing head kinematic response to horizontal accelerations simulating whiplash. Seven isolated fresh human cervical spine specimens (C0 to T1 or C7), each carrying a surrogate head designed to represent a 50th percentile human head, were mounted on the sled and subjected to incremental trauma by horizontal sled accelerations of 2.5, 4.5, 6.5, 8.5, and 10.5 g. Sled and head kinematics were measured with potentiometers and accelerometers. The incremental sled accelerations resulted in average (standard deviations) sled velocity changes (delta V) ranging from 5.8 (0.2) to 15.8 (0.2) km/h. Generally, all the peak head kinematic parameters increased with increasing sled acceleration, except for the peak head angular displacement, which decreased. In the initial phase of a whiplash trauma, the head translated posteriorly with respect to T1, without rotation. In the later phase, the head rotated backwards, but much less than its physiological limit. Maximum head rotation of 31.5 (23.9) degrees occurred in a 2.5 g trauma class, and this was less than the maximum physiological head extension of 55.1 (13.3) degrees. Head kinematics expressed in the T1 or shoulder coordinate system is better suited to study potential neck injury in whiplash.  相似文献   

9.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

10.
This study describes the discharges of central units in the medulla of the goldfish, Carassius auratus, to hydrodynamic stimuli received by the lateral line. We stimulated the animal with a small object moving in the water and recorded activity of 85 medullary lateral line units in response to different motion directions and to various object distances, velocities, accelerations and sizes. All but one unit increased discharge rate when the moving object passed the fish laterally. Five response types were distinguished based on temporal patterns of unit responses. Ten units were recorded which encoded motion direction by different temporal discharge patterns. In general, discharge rates decreased when object distance was increased and when object speed was decreased. When object size was decreased, discharge rates decreased systematically in one group of units, but they were comparable for all but the smallest object tested in a second group of units. Units responded about equally well whether an object was moved at a constant velocity or was accelerated when it passed the fish. The data indicate that medullary lateral line units in the goldfish can encode motion direction but are not tuned to other aspects of an object moving in the water. The functional properties of units in the medulla of goldfish are similar to those reported for medullary units in the catfish Ancistrus sp., suggesting that the central mechanisms for processing complex hydrodynamic stimuli may be quite similar in fish species that occupy habitats with different hydrodynamic conditions.  相似文献   

11.
Because action plans must anticipate the states of the world which will be obtained when the actions take place, effective actions depend on predictions. The present experiments begin to explore the principles underlying early-developing predictions of object motion, by focusing on 6-month-old infants' head tracking and reaching for moving objects. Infants were presented with an object that moved into reaching space on four trajectories: two linear trajectories that intersected at the center of a display and two trajectories containing a sudden turn at the point of intersection. In two studies, infants' tracking and reaching provided evidence for an extrapolation of the object motion on linear paths, in accord with the principle of inertia. This tendency was remarkably resistant to counter-evidence, for it was observed even after repeated presentations of an object that violated the principle of inertia by spontaneously stopping and then moving in a new direction. In contrast to the present findings, infants fail to extrapolate linear object motion in preferential looking experiments, suggesting that early-developing knowledge of object motion, like mature knowledge, is embedded in multiple systems of representation.  相似文献   

12.
Intracellular recordings from simple cells of the cat visual cortex were used to test linear models for the generation of selectivity for the direction of visual motion. Direction selectivity has been thought to arise in part from nonlinear processes, as suggested by previous experiments that were based on extracellular recordings of action potentials. In intracellular recordings, however, the fluctuations in membrane potential evoked by moving stimuli were accurately predicted by the linear summation of responses to stationary stimuli. Nonlinear mechanisms were not required.  相似文献   

13.
We have used optical imaging based on intrinsic signals to explore the functional architecture of owl monkey area MT, a cortical region thought to be involved primarily in visual motion processing. As predicted by previous single-unit reports, we found cortical maps specific for the direction of moving visual stimuli. However, these direction maps were not distributed uniformly across all of area MT. Within the direction-specific regions, the activation produced by stimuli moving in opposite directions overlapped significantly. We also found that stimuli of differing shapes, moving in the same direction, activated different cortical regions within area MT, indicating that direction of motion is not the only parameter according to which area MT of owl monkey is organized. Indeed, we found clear evidence for a robust organization for orientation in area MT. Across all of MT, orientation preference changes smoothly, except at isolated line- or point-shaped discontinuities. Generally, paired regions of opposing direction preference were encompassed within a single orientation domain. The degree of segregation in the orientation maps was 3-5 times that found in direction maps. These results suggest that area MT, like V1 and V2, has a rich and multidimensional functional organization, and that orientation, a shape variable, is one of these dimensions.  相似文献   

14.
We addressed the question of whether low-level motion analysers can integrate signals binocularly. We compared the temporal sensitivity in motion discrimination tasks using monocular and dichoptic first-order motion and monocular and dichoptic second-order motion. Three human observers were required to discriminate the direction of motion of either sinusoidal gratings (1 c/deg), used as a stimulus for first-order motion analysers, or the envelopes of contrast-modulated stationary sinusoidal gratings (carrier frequency 5 c/deg, carrier contrast 0.1, modulation frequency 1 c/deg), used as a stimulus for second-order motion analysers. Contrast sensitivity was measured as a function of temporal frequency. The moving grating or envelope was generated by summing two non-moving sinusoidally flickering gratings or envelopes in spatiotemporal quadrature. These were either combined monocularly or presented dichoptically. Sensitivity to the moving envelope was highest at a temporal frequency between 0.5 and 2 Hz, depending on the observer, and declined rapidly at high temporal frequencies. None of the observers was able to discriminate the direction of motion of envelopes moving faster than 4 Hz. Dichoptic and monocular presentation produced very similar results. Sensitivity to a monocularly presented moving grating was fairly uniform between 1 and 8 Hz, and declined slightly at 16 Hz. In one of three observers sensitivity to the dichoptically presented grating was very close to that of the monocularly presented grating at all temporal frequencies tested (from 1 to 16 Hz). All observers could discriminate the direction of motion of the dichoptically presented grating at 8 Hz, but two of the three were unable to discriminate its direction of motion at 16 Hz. These results indicate that second-order motion analysers have very poor temporal resolution and that dichoptic motion analysers have very good resolution. We suggest that this implies that there are low-level motion analysers that are capable of integrating information binocularly.  相似文献   

15.
Three-dimensional motion trajectories were computed, representing the motions that would be perceived by a perfect processor of acceleration information during the acceleration and deceleration stages of a centrifuge run. These motions serve as "baselines" for perceived self-motion in a centrifuge, and depend on the initial perception of orientation and velocity immediately preceding the acceleration and immediately preceding the deceleration. The baselines show that a perfect processor of acceleration information perceives self-motion during centrifuge deceleration significantly differently from self-motion during centrifuge acceleration, despite the fact that the angular accelerations have equal magnitude (with opposite direction). At the same time, the baselines can be compared with subjects' reported perceptions to highlight limitations of the nervous system; limitations and peculiarities of the nervous system are identified as deviations from a baseline. As a result, peculiarities of the nervous system are held responsible for any perception of pitch or roll angular velocity or change in tilt of the body-horizontal plane of motion during the centrifuge run. On the other hand, baselines explain perception of tilt position during deceleration, linear velocity, possible lack of significant linear velocity during deceleration, and yaw angular velocity, including on-axis angular velocity during centrifuge deceleration. The results lead to several experimental questions.  相似文献   

16.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

17.
Previous studies have generally considered heading perception to be a visual task. However, since judgments of heading direction are required only during self-motion, there are several other relevant senses which could provide supplementary and, in some cases, necessary information to make accurate and precise judgments of the direction of self-motion. We assessed the contributions of several of these senses using tasks chosen to reflect the reference system used by each sensory modality. Head-pointing and rod-pointing tasks were performed in which subjects aligned either the head or an unseen pointer with the direction of motion during whole body linear motion. Passive visual and vestibular stimulation was generated by accelerating subjects at sub- or supravestibular thresholds down a linear track. The motor-kinesthetic system was stimulated by having subjects actively walk along the track. A helmet-mounted optical system, fixed either on the cart used to provide passive visual or vestibular information or on the walker used in the active walking conditions, provided a stereoscopic display of an optical flow field. Subjects could be positioned at any orientation relative to the heading, and heading judgments were obtained using unimodal visual, vestibular, or walking cues, or combined visual-vestibular and visual-walking cues. Vision alone resulted in reasonably precise and accurate head-pointing judgments (0.3 degrees constant errors, 2.9 degrees variable errors), but not rod-pointing judgments (3.5 degrees constant errors, 5.9 degrees variable errors). Concordant visual-walking stimulation slightly decreased the variable errors and reduced constant pointing errors to close to zero, while head-pointing errors were unaffected.  相似文献   

18.
The flash-lag effect is a visual illusion wherein intermittently flashed, stationary stimuli seem to trail after a moving visual stimulus despite being flashed synchronously. We tested hypotheses that the flash-lag effect is due to spatial extrapolation, shortened perceptual lags, or accelerated acquisition of moving stimuli, all of which call for an earlier awareness of moving visual stimuli over stationary ones. Participants judged synchrony of a click either to a stationary flash of light or to a series of adjacent flashes that seemingly bounced off or bumped into the edge of the visual display. To be judged synchronous with a stationary flash, audio clicks had to be presented earlier--not later--than clicks that went with events, like a simulated bounce (Experiment 1) or crash (Experiments 2-4), of a moving visual target. Click synchrony to the initial appearance of a moving stimulus was no different than to a flash, but clicks had to be delayed by 30-40 ms to seem synchronous with the final (crash) positions (Experiment 2). The temporal difference was constant over a wide range of motion velocity (Experiment 3). Interrupting the apparent motion by omitting two illumination positions before the last one did not alter subjective synchrony, nor did their occlusion, so the shift in subjective synchrony seems not to be due to brightness contrast (Experiment 4). Click synchrony to the offset of a long duration stationary illumination was also delayed relative to its onset (Experiment 5). Visual stimuli in motion enter awareness no sooner than do stationary flashes, so motion extrapolation, latency difference, and motion acceleration cannot explain the flash-lag effect. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Contrast thresholds were measured for discriminating left vs right motion of a vertical, 1 c/deg luminance grating lasting for one cycle of motion. This test was presented on a 1 c/deg stationary grating (pedestal) of twice-threshold, flashed for the duration of the test motion. Lu and Sperling [(1995). Vision Research, 35, 2697-2722] argue that the visual system detects the underlying, first-order motion of the test and is immune to the presence of the stationary pedestal (and the 'feature wobble' which it induces). On the contrary, we observe that the stationary pedestal has large effects on motion detection at 7 and 15 Hz, and smaller effects at 0.9-3.7 Hz, evidenced by a spatial phase dependency between the stationary pedestal and moving test. At 15 Hz the motion threshold drops as much as five-fold, with the stationary pedestal in the optimal spatial phase (i.e., pedestal and test spatially in phase at middle of motion), and the perceived direction of the test motion reverses with the pedestal in the opposite phase. Phase dependency was also explored using a very brief (approximately 1 msec) static pedestal presented with the moving test. The pedestal of Lu and Sperling (flashed for the duration of the test) has a broad spectrum of left and right moving components which interact with the moving test. The pedestal effects can be explained by the visual system's much higher sensitivity to the difference of the contrast of right vs left moving components than to either component alone.  相似文献   

20.
The ability of human subjects to estimate the velocity of briefly presented moving stimuli was studied in a prediction-of-collision experiment. After the disappearance of the moving target the subject had to press a button at the moment the target would reach a predetermined position in the visual field. Four velocities of the moving target were used -6 degrees/s, 10 degrees/s, 14 degrees/s, and 20 degrees/s. For each velocity there were five exposure distances: 0.5, 1.0, 2.0, 3.0 and 4.0 degrees and four concealment distances: 6, 8, 10 and 12 degrees. For the large exposure distances a linear dependence of the response time on the concealment time was observed. This dependence was not linear for exposure durations less than 100 ms. The response time increased in these cases. Despite the common character of the results obtained with different subjects there were clear individual differences most probably due to differences in subjective velocity scales and individual mechanisms of motion extrapolation and organization of motor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号