首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group-blind multiuser detectors for uplink code-division multiple-access (CDMA) were recently developed by Wang and Host-Madsen. These detectors make use of the spreading sequences of known users to construct a group constraint to suppress the intracell interference. However, such techniques demand the estimation of the multipath channels and the delays of the known users. In this paper, several improved blind linear detectors are developed for CDMA in fading multipath channels. The proposed detectors utilize the correlation information between consecutively received signals to generate the corresponding group constraint. It is shown that by incorporating this group constraint, the proposed detectors can provide different performance gains in both uplink and downlink environments. Compared with the previously reported group-blind detectors, our new methods only need to estimate the multipath channel of the desired user and do not require the channel estimation of other users. Simulation results demonstrate that the proposed detectors outperform the conventional blind linear multiuser detectors.  相似文献   

2.
Wang and Host-Madsen (see IEEE J. Select. Areas Commun., vol.17, p.1971-84, 1999) developed group-blind multiuser detectors for use in code-division multiple-access (CDMA) uplink environments in which the base station receiver has the knowledge of the spreading sequences of all the users within the cell, but not that of the users from other cells. Yu and Host-Madsen (see Proc. IEEE Vehicular Technology Conf. (VTC99), Houston, TX, p.1042-46, 1999) later developed an adaptive version of this detector for synchronous CDMA channels. We develop a new low-complexity, high-performance subspace tracking algorithm and apply it to adaptive group-blind multiuser detection in asynchronous multipath CDMA channels. The detector can track changes in the number of users and their composite signature waveforms. We present steady-state performance as well as the ability of the receiver to track changes in the signal subspace. We also address the performance gain of the group-blind detector over its blind counterpart for this application  相似文献   

3.
In this paper, a turbo receiver structure is proposed for the uplink of coded code-division multiple-access (CDMA) systems in the presence of unknown users. The proposed receiver consists of two stages following each other. The first stage performs soft interference cancellation and group-blind linear minimum mean square error (MMSE) filtering, and the second stage performs channel decoding. The proposed group-blind linear MMSE filter suppresses the residual multiple-access interference (MAI) from known users based on the spreading sequences and the channel characteristics of these users while suppressing the interference from other unknown users using a subspace-based blind method. The proposed receiver is suitable for suppressing intercell interference in heavily loaded CDMA systems. Since the knowledge of the number of unknown users is crucial for the proposed receiver structure, a novel estimator is also proposed to estimate the number of unknown users in the system by exploiting the statistical properties of the received signal. Simulation results demonstrate that the proposed estimator can provide the number of unknown users with high accuracy; in addition, the proposed group-blind receiver integrated with the new estimator can significantly outperform the conventional turbo multiuser detector in the presence of unknown users.   相似文献   

4.
The linear subspace-based blind and group-blind multiuser detectors recently developed represent a robust and efficient adaptive multiuser detection technique for code-division multiple-access (CDMA) systems. In this paper, we consider adaptive transmitter optimization strategies for CDMA systems operating in fading multipath environments in which these detectors are employed. We make use of more recent results on the analytical performance of these blind and group-blind receivers in the design and analysis of the transmitter optimization techniques. In particular, we develop a maximum-eigenvector-based method of optimizing spreading codes for given channel conditions and a utility-based power control algorithm for CDMA systems with blind or group-blind multiuser detection. We also design a receiver incorporating joint optimization of spreading codes and transmitter power by combining these algorithms in an iterative configuration. We will see that the utility-based power control algorithm allows us to efficiently set performance goals through utility functions for users in heterogeneous traffic environments and that spreading code optimization allows us to achieve these goals with lower transmit power. The signal processing algorithms presented here maintain the blind (or group-blind) nature of the receiver and are distributed, i.e., all power and spreading code adjustments can be made using only locally available information.  相似文献   

5.
A nonlinear group-blind technique is developed for joint detection of some given users' data in a CDMA uplink environment with the presence of unknown interference. This method performs the so-called “slowest-descent search” over a likelihood function of the desired users, starting from the estimate closest to the unconstrained maximizer of the likelihood function, and along mutually orthogonal directions where this likelihood function drops to the slowest. Simulation results show that this new nonlinear technique offers substantial performance improvement over the previously proposed linear group-blind multiuser detectors with little attendant increase in computational complexity. The problem of group-blind multiuser detection in the presence of both unknown interference and impulsive ambient noise is also treated under the framework of slowest-descent search, with the aid of a novel subspace-based robust interference cancellation scheme. It is seen that this robust group-blind method significantly outperforms the robust blind multiuser detection scheme proposed previously  相似文献   

6.
We consider the problem of turbo multiuser detection for synchronous and asynchronous code-division multiple-access (CDMA) in the presence of unknown users. Turbo multiuser detectors, as previously developed, typically require knowledge of the signature waveforms of all of the users in the system and ignore users whose signature sequences are unknown, e.g., users outside the cell. We develop turbo multiuser detection for CDMA uplink systems and other environments in which the receiver has knowledge of the signature waveforms of only K˘⩽ K users. Subspace techniques are used to estimate the interference from the unknown-users and the interference estimate is subtracted from the received signal. We see that the new receiver significantly outperforms the conventional turbo multiuser receiver for moderate and high signal-to-noise ratios. It is also seen that the traditional turbo receiver provides little gain through iteration when unknown users are present  相似文献   

7.
We present a large-system performance analysis of blind and group-blind multiuser detection methods. In these methods, the receivers are estimated based on the received signal samples. In particular, we assume binary random spreading, and let the spreading gain N, the number of users K, and the number of received signal samples M all go to infinity, while keeping the ratios K/N and M/N fixed. We characterize the asymptotic performance of the direct-matrix inversion (DMI) blind linear minimum mean-square error (MMSE) receiver, the subspace blind linear MMSE receiver, and the group-blind linear hybrid receiver. We first derive the asymptotic average output signal-to-interference-plus-noise ratio (SINR) for each of these receivers. Our results reveal an interesting "saturation" phenomenon: The output SINR of each of these receivers converges to a finite limit as the signal-to-noise ratio (SNR) of the desired user increases, which is in stark contrast to the fact that the output SINR achieved by the exact linear MMSE receiver can get arbitrarily large. This indicates that the capacity of a wireless system with blind or group-blind multiuser receivers is not only interference-limited, but also estimation-error limited. We then show that for both the blind and group-blind receivers, the output residual interference has an asymptotic Gaussian distribution, independent of the realizations of the spreading sequences. The Gaussianity indicates that in a large system, the bit-error rate (BER) is related to the SINR simply through the Q function  相似文献   

8.
In blind (or group-blind) linear multiuser detection, the detector is estimated from the received signals, with the prior knowledge of only the signature waveform of the desired user (or the signature waveforms of some but not all users). The performance of a number of such estimated linear detectors, including the direct-matrix-inversion (DMI) blind linear minimum mean square error (MMSE) detector, the subspace blind linear MMSE detector, and the form-I and form-II group-blind linear hybrid detectors, are analyzed. Asymptotic limit theorems for each of the estimates of these detectors (when the signal sample size is large) are established, based on which approximate expressions for the average output signal-to-interference-plus-noise ratios (SINRs) and bit-error rates (BERs) are given. To gain insights on these analytical results, the performance of these detectors in an equicorrelated code-division multiple-acces (CDMA) system is compared. Examples are provided to demonstrate the excellent match between the theory developed here and the simulation results  相似文献   

9.
The analytical performance of the subspace-based blind linear minimum mean-square error (MMSE) multiuser detection algorithm in general multipath multi-antenna code-division multiple-access (CDMA) systems is investigated. In blind multiuser detection, the linear MMSE detector of a given user is estimated from the received signals, based on the knowledge of only the spreading sequence of that user. Typically, the channel of that user must be estimated first, based on the orthogonality between the signal and noise subspaces. An asymptotic limit theorem for the estimate of the blind linear detector (when the received signal sample size is large) is obtained, based on which approximate expressions of the average output signal-to-inference plus noise ratios (SINRs) and bit error rates (BERs) for both binary phase-shift keying (BPSK) and quaternary phase-shift keying (QPSK) modulations are given. Corresponding results for group-blind multiuser detectors are also obtained. Examples are provided to demonstrate the excellent match between the theory developed in this paper and the simulation results.  相似文献   

10.
We consider the problem of demodulating and decoding multiuser information symbols in an uplink asynchronous coded code-division multiple-access (CDMA) system employing long (aperiodic) spreading sequences, in the presence of unknown multipath channels, out-cell multiple-access interference (OMAI), and narrow-band interference (NBI). A blind turbo multiuser receiver, consisting of a novel blind Bayesian multiuser detector and a bank of MAP decoders, is developed for such a system. The effect of OMAI and NBI is modeled as colored Gaussian noise with some unknown covariance matrix. The main contribution of this paper is to develop blind Bayesian multiuser detectors for long-code multipath CDMA systems under both white and colored Gaussian noise. Such detectors are based on the Bayesian inference of all unknown quantities. The Gibbs sampler, a Markov chain Monte Carlo procedure, is then used to calculate the Bayesian estimates of the unknowns. The blind Bayesian multiuser detector computes the a posteriori probabilities of the channel coded symbols, which are differentially encoded before being sent to the channel. Being soft-input soft-output in nature, the proposed blind Bayesian multiuser detectors and the MAP decoders can iteratively exchange the extrinsic information to successively refine the performance, leading to the so-called blind turbo multiuser receiver  相似文献   

11.
本文在研究海面的红外成像特性中,建立了基于刚体的双尺度成像模型,从被动成像方面讨论了海面辐射特性的变化规律.该模型仿真结果很好地说明了风向对海面红外被动成像特性的影响.  相似文献   

12.
吴莉莉  尚勇  廖桂生 《电子学报》2004,32(6):895-898
马尔可夫链蒙特卡罗(MCMC)方法有效地解决了贝叶斯计算的问题,但是不容易将它应用于有未知干扰用户的异步多径CDMA系统.为了克服这一困难,本文提出一种新颖的贝叶斯多用户检测方法,它首先用线性群盲解相关器对接收信号做预处理,然后再用Gibbs采样(一种典型的MCMC算法)做贝叶斯多用户检测.仿真结果表明,该方法的检测性能明显地优于线性群盲多用户检测,其计算复杂度的增加与小区内用户数目呈线性关系.为了进一步提高本文方法的性能,我们使用两级Gibbs采样,根据第一级Gibbs采样的输出得到更精确的参数估计,并把它用于第二级Gibbs采样中.仿真结果证明,与只使用一级Gibbs采样的方法相比,两级Gibbs采样的检测性能明显地改善了.  相似文献   

13.
Recently developed subspace techniques for blind adaptive multiuser detection are briefly reviewed first. In particular, blind methods based on signal subspace tracking for adapting linear multiuser detectors in AWGN CDMA channels are considered, as well as extensions of these techniques to frequency selective fading channels, dispersive channels, and antenna array spatial processing. In addition, subspace‐based nonlinear adaptive techniques for robust blind multiuser detection in non‐Gaussian ambient noise channels are also described. Several new techniques are then developed within the subspace framework for blind joint channel estimation and multiuser detection, under some specific channel conditions. These include (1) an adaptive receiver structure for joint multiuser detection and equalization in dispersive CDMA channels, (2) a subspace method for joint multiuser detection and equalization in unknown correlated noise, and (3) a method for joint interference suppression and channel tracking in time‐varying fading channels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
孟艳  汪晋宽  宋昕  刘志刚 《信号处理》2008,24(3):464-466
本文研究多载波CDMA(MC-CDMA)上行链路半盲多用户检测技术,提出了一种基于子空间跟踪和卡尔曼滤波的半盲多用户检测算法。利用小区内所有用户的扩频码修改约束条件并采用修正的紧缩近似投影子空间跟踪(PASTd)算法和卡尔曼滤波算法求解优化问题,该算法利用已知的信息消除多址干扰,提高了系统的性能,同时避免了常规卡尔曼滤波算法的特征值分解问题,显著降低了计算复杂度。仿真实验验证了本文算法具有很好的检测性能和较强的抗多址干扰能力。  相似文献   

15.
Suppression of multiuser interference (MUI) and mitigation of multipath effects constitute major challenges in the design of third-generation wireless mobile systems. Most wide-band and multicarrier uplink code-division multiple-access (CDMA) schemes suppress MUI statistically in the presence of unknown multipath. For fading resistance, they all rely on transmit- or receive-diversity and multichannel equalization based on bandwidth-consuming training sequences or self-recovering techniques at the receiver end. Either way, they impose restrictive and difficult to check conditions on the finite-impulse response channel nulls. Relying on block-symbol spreading, we design a mutually-orthogonal usercode-receiver (AMOUR) system for quasi-synchronous blind CDMA that eliminates MUI deterministically and mitigates fading regardless of the unknown multipath and the adopted signal constellation. AMOUR converts a multiuser CDMA system into parallel single-user systems regardless of multipath and guarantees identifiability of users' symbols without restrictive conditions on channel nulls in both blind and nonblind setups. An alternative AMOUR design called Vandermonde-Lagrange AMOUR is derived to add flexibility in the code assignment procedure. Analytic evaluation and preliminary simulations reveal the generality, flexibility, and superior performance of AMOUR over competing alternatives  相似文献   

16.
传统的多用户处理是在上行进行的,本文提出了应用于TDD-CDMA系统中下行方向的一种多用户处理方案.在TDD-CDMA系统中,可以利用上行信道参数对下行信道参数做出估计.本文提出了一种实时利用信道参数来降低CDMA中的多用户干扰的方法.在该方案中,其多用户处理的基本思路是通过优化系统的多用户扩频码字和解扩码字来降低多用户干扰.为了达到最大的信干比,本文提出了系统扩频码选择的优化准则,它能够充分利用信道的特性.本文根据一定的迭代算法给出优化问题的解.数值分析结果表明,采用上述方案的CDMA系统相对于采用Gold码的系统能够极大地降低多用户干扰,提高信干比.  相似文献   

17.
Space-time multiuser detection in multipath CDMA channels   总被引:3,自引:0,他引:3  
The problem of multiuser detection in multipath CDMA channels with receiver antenna array is considered. The optimal space-time multiuser receiver structure is first derived, followed by linear space-time multiuser detection methods based on iterative interference cancellation. Blind adaptive space-time multiuser detection techniques are then proposed, which require prior knowledge of only the spreading waveform and the timing of the desired user's signal. Single-user-based space-time processing methods are also considered and are compared with the multiuser approach. It is seen that the proposed multiuser space-time processing techniques offer substantial performance gains over the single-user-based methods, especially in a near-far situation  相似文献   

18.
慕彩红  焦李成  王伶 《信号处理》2004,20(4):369-372
本文提出了一种新的用于CDMA系统上行链路,且具有较强抗远近效应性能的半盲自适应多用户检测器(MUD)。借鉴串行干扰抵消(SIC)的思想,该方法利用一种新的自适应幅度估计器进行小区内用户信号的幅度估计,然后使用一种基于快速子空间跟踪算法的盲MUD,按照幅度从大到小的顺序依次检测出小区内的用户。这样,既通过盲方法抑制了来自小区外的干扰,又充分利用小区内用户的信息,提高了检测性能,特别是对弱信号的检测性能,具有较强的抗远近效应的性能。  相似文献   

19.
We consider a multiuser multiple-input multiple-output (MIMO) communication system using code-division multiple access (CDMA) and multiuser detection to discriminate the different users. Our focus is on the CDMA uplink of a frequency-nonselective Rayleigh fading channel. We study two types of receivers: joint receivers, which address simultaneously both spatial and multiple-access interference; and separate receivers, addressing the two types of interference individually. This approach allows assessing the benefits of adding MIMO processing capabilities to existing multiuser single-input single-output systems. For both receiver types, we analyze solutions based on linear (matched filter, decorrelator, minimum mean-square error) and maximum-likelihood receivers. For all the receivers considered, we provide closed-form expressions (as expectations of given functions) of the resulting pairwise error probabilities. Performance results are obtained in terms of frame-error rate versus E/sub b//N/sub 0/, following two different approaches. An analytic approach using large-system asymptotic methods, whereby the system parameters (number of users and antennas, spreading gain) are assumed to grow to infinity with finite limiting ratios. A computer-simulation approach is used to illustrate the differences between asymptotic and simulation results.  相似文献   

20.
为了在TD-SCDMA上行链路传输中获得更高的频谱利用率,提出了一种上行链路的发送和接收方案。发送端采用准同步CDMA加QAM调制,扩频序列采用优选相位的Gold序列,该序列在一定时延范围内具有良好的互相关性。接收端采用串行干扰抵消的方法去除或抑制很严重的多用户干扰,该方法实现简单,适合瑞利衰落信道。仿真结果说明采用这种发送和接收方案后,在应用智能天线抑制多径后,只要用户间的时延控制在3/8个chip之内,误符号率(SER)性能就几乎与单用户界(SUB)一致,频谱利用率可以达到4 bit/s/Hz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号