首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
核模糊聚类算法不适用于含孤立点与噪声点的数据,并且对初始化中心敏感。针对此种情况,结合减法聚类,对样本加权,放宽隶属度归一化条件,提出基于减法聚类的加权核模糊聚类。通过IRIS和WINE数据集证实改进算法比传统的核聚类算法具有更高的健壮性与抗噪性,并将改进后的算法运用在育肥猪出栏中,验证了算法的实用性与可行性。  相似文献   

2.
传统减法聚类的性能依靠山峰函数中参数的选择,只有合适的参数才能使减法聚类产生较好的效果.因此,本文提出一种基于遗传算法的减法聚类方法.首先,提出一种改进的减法聚类算法.其次,利用遗传算法优化改进算法中的参数.最后,采用3个人工数据集和2个真实数据集进行实验,实验结果表明本文方法是一种行之有效的聚类算法.  相似文献   

3.
一种快速山峰聚类算法*   总被引:1,自引:1,他引:0  
山峰聚类既可以对数据集进行近似聚类,又可以为其他聚类方法提供聚类所需的初始聚类中心。减法聚类是山峰聚类的改进,它避免了山峰聚类中出现的计算量随样本维数增加呈指数增长的情况。但减法聚类对处理大样本集也力不从心。引入了P-tree数据结构,对高维大样本集进行分解,然后用减法聚类对子样本集进行聚类。此算法既避免了山峰聚类的维数灾难问题,也解决了减法聚类中样本数太大的问题。实验结果证明,该算法有效地减少了运算量,提高了聚类的速度。  相似文献   

4.
针对快速K-medoids聚类算法存在密度计算复杂耗时和初始聚类中心可能位于同一类簇的缺陷,以及基于邻域的K-medoids算法的邻域半径需要人为给定一个调节系数的主观性缺陷,分别以样本间距离均值和相应样本的标准差为邻域半径,以方差作为样本分布密集程度的度量,选取方差值最小且其间距离不低于邻域半径的样本为K-medoids的初始聚类中心,提出了两种方差优化初始中心的K-medoids算法。在UCI数据集和人工模拟数据集上进行了实验测试,并对各种聚类指标进行了比较,结果表明该算法需要的聚类时间短,得到的聚类结果优,适用于较大规模数据集的聚类。  相似文献   

5.
针对传统减法聚类算法需要人工输入参数τ1和τ2的不足,对算法进行改进。引入AFS理论,通过隶属度矩阵自动确定密度半径τ1、半自动确定权重参数τ2,提出了改进的语义减法聚类算法SDSCM,并在Iris和Wine数据集上将其与FCM、KMEANS算法进行比较实验。实验结果表明,SDSCM在评价指标语义强度期望上高于FCM、KMEANS 1%~5%。SDSCM的SPT指标低于FCM、KMEANS,算法的类间分离度有待提高。SDSCM较好地解决了传统减法聚类人工输入参数τ1和τ2带来的弊端,并给出了更贴近用户给定语义的聚类。  相似文献   

6.
基于减法聚类和快速紧密性函数的SF-FCM   总被引:1,自引:0,他引:1  
李洪波 《控制与决策》2011,26(7):1074-1078
首先结合减法聚类和模糊C-均值聚类各自的优点,运用减法聚类自适应地确定模糊C-均值聚类(FCM)的初始聚类数;然后,提出了改进的紧密性函数,以此改进用于确定FCM聚类结构的有效性函数.改进后的紧密性函数将对聚类结果贡献不大的数据予以剔除,使得算法适应能力更强,执行速度更快.实验结果表明,该快速紧密性函数是有效的,而且计算速度更快.  相似文献   

7.
多尺度的谱聚类算法   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种多尺度的谱聚类算法。与传统谱聚类算法不同,多尺度谱聚类算法用改进的k-means算法对未经规范的Laplacian矩阵的特征向量进行聚类。与传统k-means算法不同,改进的k-means算法提出一种新颖的划分数据点到聚类中心的方法,通过比较聚类中心与原点的距离和引入尺度参数来计算数据点与聚类中心的距离。实验表明,改进算法在人工数据集上取得令人满意的结果,在真实数据集上聚类结果较优。  相似文献   

8.
提出一种将减法聚类与改进的模糊C-均值聚类相结合并用于说话人识别的方法.该方法将从语 音信号中提取的Mel 频率倒谱系数及其差分作为特征参数;用减法聚类算法初始化聚类中心,再用改进的模 糊C-均值聚类算法进行修正,形成码本.识别时,对每一个待识别语音进行模糊聚类识别.仿真结果表明,该 方法比改进的模糊C-均值聚类算法识别率高,具有较好的鲁棒性,且计算比较简单.  相似文献   

9.
提出一种优化传统协同聚类中模糊点类别归属的改进算法,该算法引入基于清晰半径的新相似性距离公式,用超球体中心区域代替传统算法中的类中心,在各子集初始聚类结果的基础上,对容易导致类别归属错误的模糊点重新计算隶属度,得到较为清晰的聚类结果。实验结果显示,改进算法能很大程度地减少边界上的模糊点个数及纠正分类错误,清晰半径的引入还能弱化各子集之间协同系数的差异,使得参数设置更为简单。  相似文献   

10.
针对大规模数据集减法聚类时间复杂度高的问题,提出一种基于Nyst(o)m密度值逼近的减法聚类方法.特别适用于大规模数据集的减法聚类问题,可极大程度降低减法聚类的时间复杂度.基于Nystr(o)m逼近理论,结合经典减法聚类样本密度值计算的特点,巧妙地将Nystr(o)m理论用于减法聚类未采样样本之间密度权值矩阵的逼近,从而实现了对所有样本的密度值逼近,最后沿用经典减法聚类修正样本密度值的方法,实现整个减法聚类过程.将本文算法在人工数据、标准彩色图像及UCI数据集上进行了实验,详细说明了本文算法利用少数采样样本逼近多数未采样样本密度权值、密度值以及进行减法聚类的详细过程,并给出了聚类准确率、耗时及算法性能加速比.实验结果表明,与经典的减法聚类相比,本文算法在不影响聚类结果的情况下,对于较大规模数据集,可显著降低减法聚类的时间复杂度,极大程度地提高减法聚类的实时性能.  相似文献   

11.
The density based notion for clustering approach is used widely due to its easy implementation and ability to detect arbitrary shaped clusters in the presence of noisy data points without requiring prior knowledge of the number of clusters to be identified. Density-based spatial clustering of applications with noise (DBSCAN) is the first algorithm proposed in the literature that uses density based notion for cluster detection. Since most of the real data set, today contains feature space of adjacent nested clusters, clearly DBSCAN is not suitable to detect variable adjacent density clusters due to the use of global density parameter neighborhood radius N rad and minimum number of points in neighborhood N pts . So the efficiency of DBSCAN depends on these initial parameter settings, for DBSCAN to work properly, the neighborhood radius must be less than the distance between two clusters otherwise algorithm merges two clusters and detects them as a single cluster. Through this paper: 1) We have proposed improved version of DBSCAN algorithm to detect clusters of varying density adjacent clusters by using the concept of neighborhood difference and using the notion of density based approach without introducing much additional computational complexity to original DBSCAN algorithm. 2) We validated our experimental results using one of our authors recently proposed space density indexing (SDI) internal cluster measure to demonstrate the quality of proposed clustering method. Also our experimental results suggested that proposed method is effective in detecting variable density adjacent nested clusters.  相似文献   

12.
密度聚类是数据挖掘和机器学习中最常用的分析方法之一,无须预先指定聚类数目就能够发现非球形聚类簇,但存在无法识别不同密度的相邻聚类簇等问题。采用逆近邻和影响空间的思想,提出一种密度聚类分析算法。利用欧氏距离计算数据对象的K近邻与逆近邻,依据逆近邻识别其核心对象,并确定其核心对象的影响空间;利用逆近邻和影响空间,重新定义密度聚类簇扩展条件,并通过广度优先遍历搜索核心对象的影响空间,形成密度聚类簇,有效解决了无法区分不同密度相邻聚类簇等不足,提高了密度聚类分析效果和效率。基于UCI和人工数据集实验验证了该算法的有效性。  相似文献   

13.
Clustering is a widely used unsupervised data mining technique. It allows to identify structures in collections of objects by grouping them into classes, named clusters, in such a way that similarity of objects within any cluster is maximized and similarity of objects belonging to different clusters is minimized. In density-based clustering, a cluster is defined as a connected dense component and grows in the direction driven by the density. The basic structure of density-based clustering presents some common drawbacks: (i) parameters have to be set; (ii) the behavior of the algorithm is sensitive to the density of the starting object; and (iii) adjacent clusters of different densities could not be properly identified. In this paper, we address all the above problems. Our method, based on the concept of space stratification, efficiently identifies the different densities in the dataset and, accordingly, ranks the objects of the original space. Next, it exploits such a knowledge by projecting the original data into a space with one more dimension. It performs a density based clustering taking into account the reverse-nearest-neighbor of the objects. Our method also reduces the number of input parameters by giving a guideline to set them in a suitable way. Experimental results indicate that our algorithm is able to deal with clusters of different densities and outperforms the most popular algorithms DBSCAN and OPTICS in all the standard benchmark datasets.  相似文献   

14.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

15.
This paper presents a method of the unsupervised discovery of valid clusters using statistics on the modes of the probability density function in scale space. First, a Gaussian scale-space theory is applied to the kernel density estimation to derive the hierarchical relationships among the modes of the probability density function in scale space. The data points are classified into clusters according to the mode hierarchy. Second, the algorithm of cluster discovery is presented. The valid clusters are discovered by testing whether each cluster is distinguishable from spurious clusters obtained from uniformly random points. The statistical hypothesis test for cluster discovery requires distribution forms of annihilation scales of the modes estimated from the uniformly random points. The distribution forms are experimentally shown to be unimodal. Finally, cluster discovery is demonstrated using synthetic data and benchmark data.  相似文献   

16.
针对DBSCAN算法存在的参数敏感性和不能区分相连的不同密度的簇等缺陷,提出了一种基于DBSCAN算法的改进算法。算法提出了累积平均密度的概念,用来作为簇合并的依据,弱化了密度阈值Minpts的作用;选取密度最大的对象作为初始聚类中心,按照密度由高到低的顺序进行聚类,具有一定的层次性,因此支持变密度数据集聚类。最后,用数据集对算法进行了聚类实验。实验结果表明,改进算法具有一定的参数鲁棒性,对于相连的不同密度的簇,能够达到理想的聚类效果。  相似文献   

17.
一种基于小生境遗传算法的中文文本聚类新方法   总被引:2,自引:0,他引:2  
针对传统c-均值等算法在文本聚类中的缺陷,提出了一种基于小生境遗传算法的中文文本聚类新方法,将文本集的聚类问题转化垄多峰函数的优化问题。以多峰函数的峰值代表文本的聚类中心,聚类的数目不必预先给定。描述了该聚类方法实现文本聚类时适应值函数的构造方法以及小生境半径的动态估计方法。实验结果表明,该方法提高了文本聚类的平均准确率。  相似文献   

18.
中医四诊分析是基于四诊信息进行中医证候分类研究的重要内容,构建有效的中医四诊分析模型可以更好地挖掘中医证候间的关联关系,从而为中医临床提供决策支持。本文通过对子空间聚类CLIQUE算法的分析,结合四诊信息的数据特征,提出一种基于限定空间搜索策略的改进CLIQUE算法(ChM-CLIQUE)。通过优化CLIQUE算法的搜索策略,以稠密单元中网格密度最大的单元为中心进行深度优先搜索生成聚类簇,提高算法的性能,同时基于聚类簇中样本高斯分布的特性引入网格自适应密度,增强聚类边界的识别精度。在中医临床采集的数据集上进行多组对比实验,实验结果表明本文算法的轮廓系数较CLIQUE算法有显著性的提高。  相似文献   

19.
针对目标跟踪中跟踪实时性和适应目标尺度变化的问题,提出在粒子滤波框架内基于簇相似度测量的实时目标跟踪算法,算法的外观模型使用改进的均值类哈尔特征表示.首先,根据采样半径采集目标簇和背景簇.然后,定义粒子与簇之间的相似度.当新帧到来时计算每个粒子与目标簇和背景簇的相似度,并将相似度最高的粒子作为目标在该帧的位置.在每帧跟踪结束时,更新目标簇和背景簇的统计特征,并对粒子进行重采样防止退化.与当前通用的跟踪算法对比体现文中算法的优越性.  相似文献   

20.
CFSFDP(Clustering by Fast Search and Find of Density Peaks)是一种新的基于密度的聚类算法。该算法可以对非球形分布的数据聚类,有待调节参数少、聚类速度快等优点。但是对于类簇间密度相差较大的数据,该算法容易遗漏密度较小的类簇而影响聚类的准确率。针对这一问题,提出了基于密度比例峰值聚类算法即R-CFSFDP。该算法将密度比例引入到CFSFDP中,通过计算样本数据的密度比峰值来提高数据中密度较小类簇的辨识度,进而提升整体聚类的准确率。基于9个常用测试数据集(2个人工合成数据集,7个UCI数据集)的聚类实验结果表明,对于类簇间密度相差较大和类簇形状复杂的数据聚类问题,R-CFSFDP能够使得类簇中心更加清晰、易确定,聚类结果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号