首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, titanium plate was treated by a novel method of laser quenching, simultaneously combined with liquidnitrogen cryogenics(LQLNC). The microstructure and properties of the titanium plate after treatment were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, Vickers hardness testing, and friction wear testing.The results show that the treated titanium plate is covered by a nitrided layer with a homogeneous thickness of about 60 μm,while the nitrided layer consists of Ti N and α-Ti phases. Compared to general laser quenching, the LQLNC treatment increases the hardness and wear resistance of the surface-modified layer of the titanium plate. As a result of grain refinement in the nitrided layer, the cracking induced by the rapid solidification of the conventional laser-quenching process has also been effectively solved.  相似文献   

2.
Cu modified layer was prepared on the surface of AISI304 stainless steel by plasma surface alloying technique.The effects of processing parameters on the thickness,surface topography,microstructure and chemical composition of Cu modified layer were characterized using glow discharge optical emission spectroscopy(GDOES),scanning electron microscopy(SEM)and X-ray diffraction(XRD).The experimental results show that the surface modified layer is a duplex layer(deposited + diffused layer)with thickness of about 26 μm under the optimum process parameters.The modified layer is mainly composed of a mixture of Cu and expanded austenite phase.The ball-on-disk results show that the modified layer possesses low friction coefficients(0.25)and excellent wear resistance(wear volume 0.005×109 μm3).The Cu modified layer is very effective in killing the bacteria S.aureus.Meanwhile,no viable S.aureus is found after 3 h(100% killed)by contact with the Cu alloyed surface.  相似文献   

3.
C/C-SiC composites with SiC island distribution were prepared via a new processing route. The fabrication process mainly included silicon infiltration by ultrasonic vibration, chemical vapor deposition (CVD), siliconizing, liquid phase impregnation and carbonization. The wear and friction properties were tested by an MM-1000 wet friction machine. The results show that SiC phases are mainly distributed between carbon fibers and pyrocarbons as well as among the pryocarbons. The dynamic friction coefficient of the composites decreases gradually from 0.126 to 0.088 with the increase of the surface pressure from 0.5 to 2.5 MPa at the same rotary speed. Furthermore, under the constant surface pressure, the dynamic friction coefficient increases from 0.114 to 0.126 with the increase of the rotary speed from 1 500 to 2 500 r/min. However, the coefficient decreases to 0.104 when the rotary speed exceeds 4 500 r/min. During the friction process, the friction coefficient of C/C-SiC composite is between 0.088 and 0.126, and the wear value is zero after 300 times brake testing. Foundation item: Project(2006CB600901) supported by the Major State Basic Research and Development Program of China; Project(0991015) supported by Guangxi Science Found, China; Project(200808MS083) supported by Guangxi Education Department Found  相似文献   

4.
LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the films were examined by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. LiMn2O4 thin films of different thickness derived from solution deposition and rapid thermal annealing are homogeneous and crack free with the grain size between 20 nm and 50 nm. The specific capacity of these films is between 42 and 47 μAh·cm2·μm−1. The capacity decreases with the increase of discharge current density. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the film thickness increases from 0.18 μm to 1.04 μm. The lithium diffusion coefficients of these films are in the same order of 10−11 cm2·s−1.  相似文献   

5.
在线接触摩擦副中,非光滑结构单元的凹坑、凸包、波纹、鳞片形态等表面凹坑形貌对其耐磨性有一定的影响,其中凹坑的直径、深度对耐磨性的影响十分显著。以圆形凹坑非光滑形貌为例,采用有限元仿真分析的方法,对非光滑表面凹坑不同直径和深度的磨损过程进行了分析,研究了仿生非光滑表面对摩擦副耐磨性影响的程度。研究结果表明:线性摩擦副工作过程中,凹坑间距为1 000 m的条件下,摩擦副表面的等效应力和摩擦力随着圆形凹坑直径的增大而增大,随其深度的增大而呈抛物线增长;且在凹坑直径为100 m、深度为300 m时,矩形块的耐磨性最优。  相似文献   

6.
1INTRODUCTIONThere are many disadvantages in the presentHall-Heroult electrolytic process[1],such as highenergy consumption,low unit productivity and se-rious environmental pollution and so on,especiallythe high energy consumption of per ton alumin-ium,which ranges from13MW·h to15MW·h,and the energy efficiency is less than50%[2].Therefore,low-energy consumption aluminumre-duction cell has been a research focus for interna-tional aluminum companies and institutes.Thedrained cathode cel…  相似文献   

7.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

8.
Sources, components and calibration of paleodose were studied for proper evaluation of the paleodose of porcelain in thermoluminescence (TL) dating. In the TL dating of porcelain using the pre-dose technique, the β dose from the internal natural radiation in the body of porcelain is the first, the environmental dose the second, and the α dose negligible. Sample thickness of 0.2–0.5 mm was used in the paleodose calibration. For a porcelain sample of such thickness, the distribution of β dose inside the sample was nonlinear when the sample (aluminium replaces porcelain in this experiment) was irradiated by a laboratory 90Sr-90Y β source. Therefore, the β dose used was only an average value. A distribution curve of β dose and the calculation of average β dose in the sample were obtained, according to the build-up and attenuation effects of β dose in the sample. The results showed that a sample thickness of 200 μm resulted in an average dose increment of about 4% compared to the surface whereas for a sample with a thickness of 400 μm, the average dose reduced by the same percentage, and that for a sample of 300 μm in thickness the average dose is equal to surface dose approximately. The average β dose in samples with various thickness can be obtained by the provided equations.  相似文献   

9.
Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mechanism of C/C-SiC composites at different brake speeds were investigated.The results indicate that the composites are composed of 58wt%C,37wt%SiC,and 5wt%Si.The density and open porosity are 2.0 g.cm~(-3) and 10%,respectively.The C/C-SiC brake composites exhibit good mechanical properties.The ...  相似文献   

10.
We describe a direct atomic layer deposition method to grow lubricant tungsten disulfide (WS2) films. The WS2 films were deposited on a Si (100) substrate and a zinc sulfide (ZnS) film coated the Si (100) substrate using tungsten hexacarbonyl and hydrogen sulfide as precursors. The ZnS film served as an intermediate layer to facilitate the nucleation and growth of the WS2 films. The thickness of the WS2 films was measured via scanning electron microscope, the microstructure was probed with an X-ray diffractometer and a transmission electron microscope. The friction coefficient was measured with a ball-on-disk tester under dry nitrogen. The results reveal that the WS2 films deposited on both substrates are ~175 nm and have (002) and (101) crystal orientations. The WS2 film deposited on the ZnS coated Si substrate exhibits a stronger (002) orientation and a denser crystal structure than that deposited on the Si substrate. The WS2 films on both substrates have low friction coefficients. However, due to the stronger (002) orientation and denser crystal structure, the friction coefficient of the WS2 film deposited on ZnS coated Si substrate is smaller with longer wear life.  相似文献   

11.
为了提高A473M马氏体不锈钢表面的耐磨性能,采用滚压加工强化不锈钢表面,对其组织及性能进行研究,并确定了最佳工艺参数.采用扫描电子显微镜、白光干涉仪、显微硬度计和摩擦磨损实验机对不锈钢的硬化层组织、表面粗糙度、显微硬度及摩擦磨损性能进行表征.结果表明,当滚压进给量由0.05 mm/r增加至0.15 mm/r时,不锈钢表面粗糙度变化趋势呈“∨”形,表面显微硬度和磨损性能的变化趋势呈“∧”形.当进给量为0.1 mm/r且表面粗糙度为62.7 nm时,不锈钢硬化层组织明显细化,滚压层表面显微硬度达到550 HV且为基材的2.2倍,硬化层深度达到200 μm,相对耐磨性为3.7.  相似文献   

12.
SiC/Si-W-Mo coating for protection of C/C composites at 1873 K   总被引:1,自引:0,他引:1  
In order to prevent carbon/carbon composites from oxidation at 1873 K, an efficient oxidation protective SiC/Si-W-Mo coating was prepared by a two-step pack cementation technique. The microstructures and the phase composition of the as-received multi-coating were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is seen that the compact multi-coating is composed of α-SiC, Si, and (WxMO1-x)Si2. Oxidation test shows that, after oxidation at 1873 K in air for 102 h and thermal cycling between 1873 K and room temperature for 10 times, the weight loss of the SiC/Si-W-Mo coated C/C composites is only 0.26%. The invalidation of the multi-coating is attributed to the formation of penetrable cracks in the coating. 2008 University of Science and Technology Beijing. All rights reserved.  相似文献   

13.
Given that fretting wear causes failure in steel wires, we carried out tangential fretting wear tests of steel wires on a self-made fretting wear test rig under contact loads of 9 and 29 N and fretting amplitudes ranging from 5 to 180 μm. We observed morphologies of fretted steel wire surfaces on an S-3000N scanning electron microscope in order to analyze fretting wear mecha-nisms. The results show that the fretting regime of steel wires transforms from partial slip regime into mixed fretting regime and gross slip regime with an increase in fretting amplitudes under a given contact load. In partial slip regime, the friction coefficient has a relatively low value. Four stages can be defined in mixed fretting and gross slip regimes. The fretting wear of steel wires in-creases obviously with increases in fretting amplitudes. Fretting scars present a typical morphology of annularity, showing slight damage in partial slip regime. However, wear clearly increases in mixed fretting regime where wear mechanism is a combination of plastic deformation, abrasive wear and oxidative wear. In gross slip regime, more severe degradation is present than in the other regimes. The main fretting wear mechanisms of steel wires are abrasive wear, surface fatigue and friction oxidation.  相似文献   

14.
磁悬浮硬盘转子机电耦合动力学模型   总被引:1,自引:0,他引:1  
磁悬浮硬盘转子系统由定子、转子、电磁作动器、传感器、控制器和放大器等部件组成。为了研究磁悬浮硬盘转子的动力学特性,不仅要建立转子的动力学模型,还要将定子和磁力轴承的动力学模型融入到转子模型之中。提出了一种基于状态空间的统一的动力学模型,它包含了机、电、磁、控制系统之间的耦合关系,这个统一的动力学模型能够用于磁悬浮转子系统的稳定性、极限转速、动态响应等特性分析。  相似文献   

15.
The cooperative effect of laser surface texturing (LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated. A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150 μm and the depth of 30–35 μm distributed circumferentially on the disc surface. The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique. A deep diffusion layer with a thickness of 30 μm and a high hardness of HV900 was formed in this alloy. Tribological experiments of three types of samples (smooth, texturing and texturing + alloying) were conducted with a ring-on-disc tribometer to simulate the face seal. It is found that, in comparison with smooth steel surfaces, the laser texturing samples significantly reduce the friction coefficient. Moreover, the lower wear rate of the sample treated with the two surface techniques is observed.  相似文献   

16.
新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验   总被引:3,自引:3,他引:0  
选取新疆岩蜥为典型动物,以形态、结构、材料作为因素设计仿生耦合试样,通过喷砂试验检验耦合试样表面的冲蚀磨损特性。喷砂试验选用粒径为1000μm的Al2O3颗粒为磨料,对LY12硬铝合金与45#钢为基底的仿生耦合试样进行试验。结果表明,在冲蚀时间为180 s,入射角为30°,入射距离为200 mm,空气压力为0.4 MPa条件下,耦合试样耐冲蚀磨损性能较对照试样提高18.7%。耦合试样特征因子最优组合为以LY12硬铝合金为基底材料,非光滑单元形态的形状为圆形凹坑、直径为3 mm,单元间距为6 mm的规则分布,表面涂层(Al2O3+13%TiO2)厚度为100μm。  相似文献   

17.
Self-propagating high-temperature synthesis of (W, Ti) C powders   总被引:1,自引:0,他引:1  
SelfpropagatingHightemperatureSynthesis(SHS,orcombustionsynthesis),anewmethodforthepreparationofmaterials,wasdevelopedbyMezhanovetalinthe1960′s.Comparedtotraditionalmethods,itsadvantagesincludehigherpurityoftheproducts,lowenergyrequirements,short…  相似文献   

18.
A stratified rock mass model was founded by FLAC3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σ c of rock sample decreases firstly and then increases; when β is in the range of 20°–30° and 80°–90°, σ c has the largest sensitivity to β; while β falls in the range of 30°–70°, σ c varies little. When ϕ j <β<90° (β j is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while βϕ j or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β⩾ ϕ j and β=90°, which is in more accordance with the real situation. Foundation item: Project (50099620) supported by the National Natural Science Foundation of China  相似文献   

19.
Silicide coating was prepared on electro-deposited nickel layer by the slurry pack cementation process on copper matrix at 1173 K for 12 h using SiO2 as Si source, pure Al powder as reducer, a dual activator of NaF+NH4Cl and albumen (egg white) as cohesive agent. Microstructure, properties and siliconizing mechanism of silicide coating were discussed. The experimental results show that the silicide coating with 220 μm thickness is mainly composed of a Ni2Si phase and a small amount of Ni31Si12 phase. Its mean microhardness (HV 790) is ten times than that of copper substrate (HV 70). The coefficient of friction decreases from 0.8 of pure copper to about 0.3 of the siliconzed sample. SiF2, SiCl2 and SiCl3 are responsible for the transportation and deposition of Si during the slurry pack cementation process.  相似文献   

20.
The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy. The full width at half maximum (FWHM) of the D-band indicates the amount of defects in the in-plane lattice, while the G-to-D band intensity (peak area) ratios (I G/I D) is used to evaluate the degree of graphitization. The results show that the FWHM of D-band of sample with RL pyrocarbon changes greatly from 36 cm−1 to 168 cm−1 after braking tests, which indicates that a large number of lattice defects are produced on its wear surface. However, the graphitization degree of resin-derived carbon sample rises significantly, because the I G/I D increases from 0.427 to 0.928. Braking tests under normal loading conditions, involving high temperature and high pressure, produce a lot of lattice defects on the wear surface, and induce the graphitization of the surface. Sample with RL pyrocarbon having a low hardness is easy to deform, and has the most lattice defects on the wear surface after braking. While raw materials with resin-derived carbon have the lowest graphitization degree which rises greatly during braking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号