首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincate solutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the results it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposition and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of electrochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyte and the process conditions altering and the relationship between the content of Fe and the appearance of the coating are interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive. In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron ions, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is in agreement with the results of process experiments.  相似文献   

2.
In order to inhibit hydrogen evolution and enhance current efficiency of Zn-Fe alloy electrodeposition from alkaline zincate solution, hydrogen inhibitors composed of the sulfur group elements were optimized on the basis of atom structures analysis. The effects of hydrogen inhibitor on the current efficiency of Zn-Fe alloy electroplating and their electrochemical behaviors were studied. The results indicate that hydrogen inhibitor can increase the current efficiency of Zn-Fe alloy electroplating evidently, from 63.28% without hydrogen inhibitor up to 83.54% with a hydrogen inhibitor at a volume fraction of 2.0%, while it has a minor influence on that of pure Zn plating, which maintains at 80%. The optimum volume fraction of hydrogen inhibitor is 2.0%.  相似文献   

3.
The effect of hydrogen inhibitor on partial current densities ofZn, Fe and differential capacitance of electrode/electrolyte interface, and adsorbing type of hydrogen inhibitor were studied by the methods of electrochemistry. The mechanism of current efficiency improvement were explained from the point of valence electron theory. The results indicate that the partial current density of Fe increases in addition of hydrogen inhibitor, which reaches the maximum of 0.14 A/dm^2 when current density is 0.2 A/din〈 Differential capacitance of electrode/electrolyte interface decreases obviously from 20.3μF/cm^2 to 7 μF/cm^2 rapidly with the concentration varying from 0 to 20 mL/L, because hydrogen inhibitor chemically adsorbs on active points of Fe electrode surface selectively. Element S in hydrogen inhibitor with negative electricity and strong capacity of offering electron shares isolated electrons with Fe. The adsorption of H atom is inhibited when adsorbing on active points of Fe electrode surface firstly, and then current efficiency of Zn-Fe alloy electroplating is improved accordingly.  相似文献   

4.
A novel composite polymer electrolyte was prepared by blending an appropriate amount of LiC104 and 10% (mass fraction) fumed SiO2 with the block copolymer of poly (ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH2CI2.The ionic conductivity, electrochemical stability, interfacial characteristic and thermal behavior of the composite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linear sweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transition temperature acts as a function of salt concentration, which increases with the LiC104 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relation between the filled fumed SiO2 and the lithium salt in the composite polymer electrolyte. Over the salt concentration range and the measured temperature, the maximum ionic conductivity of the composite polymer electrolyte (10^4.41 S/cm) appeared at EO/Li=25 (mole ratio) and 30~C, and the beginning oxidative degradation potential versus Li beyond 5 V.  相似文献   

5.
Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite ...  相似文献   

6.
7.
Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited from dual baths. The coated samples were evaluated in terms of surface appearance, surface and cross-sectional morphologies, as well as corrosion resistance. The results obtained from the salt spray test show that the zinc and Zn-Ni alloy CMM coatings are more corrosion-resistant than the monolithic coatings of zinc or Zn-Ni alloy alone with a similar thickness. The corrosion potential measurement and anodic polarisation tests were undertaken to examine the probable corrosion mechanisms of zinc and Zn-Ni alloy CMM coatings. Analysis on the micrographic features of zinc and Zn-Ni alloy CMM coatings after the corrosion test explains the probable reasons why the Zn-Ni/Zn CMM coatings have a better protective performance. Surface morphologies and compositional analysis of the remaining coating material of Zn-Ni alloy deposit after the corrosion test confirms the dezincification mechanism of the Zn-Ni alloy deposit during the corrosion process.  相似文献   

8.
Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electredeposition method. The Ni-Co was used as the metal matrix, and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution, the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities, and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density particles caused dispersive strengthening and grain refining.  相似文献   

9.
Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD was less than 0.5 T, numerous needle-like structures appeared on the coating surface. With increasing MFD, the needle-like structures weakened and were transformed into dome-shaped structures. Meanwhile, compared to results obtained in the absence of a magnetic field, the silicon content in the coatings significantly increased as the MFD was increased for all of the samples obtained using a vertical electrode system. However, in the case of an aclinic electrode system, the silicon content decreased. Furthermore, the cathode current efficiency was considerably diminished when a magnetic field was applied. A possible mechanism for these phenomena was discussed.  相似文献   

10.
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide (CTAB)-modified Watt’s nickel bath with Fe2O3 particles dispersed in it. The effects of the plating parameters on the chemical composition, structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray (EDS) spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix. The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring, and the deposition of Co is favoured at high concentration of CTAB. Moreover, the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed 〈220〉 preferred orientation. Composites with high concentration of embedded particles exhibit a preferred crystal orientation of 〈111〉. The more the embedded Fe2O3 particles in the metallic matrix, the smaller the sizes of the crystallite for the composite deposits.  相似文献   

11.
Cobalt-molybdenum (Co-Mo) amorphous alloy thin films were deposited on copper substrates by the electrochemical method at pH 4.0. Among the experimental electrodeposition parameters, only the concentration ratio of molybdate to cobalt ions ([ MoO2-4 ]/[CO2 ]) was varied to analyze its influence on the mechanism of induced cobalt-molybdenum codeposition. Voltammetry was one of the main techniques, which was used to examine the voltammetric response, revealing that cobalt-molybdenum codeposi-tion depended on the nature of the species in solution. To correlate the type of the film to the electrochemical response, various co-bait-molybdenum alloy thin films obtained from different [ MoO2-4]/[Co2 ] solutions were tested. Crack-free homogeneous films could be easily obtained from the low molybdate concentrations ([ MoO2-4]/[Co2 ]≈0.05) applying low deposition potentials.Moreover, the content of molybdenum up to 30wt% could be obtained from high molybdate concentration; in this case, the films showed cracks. The formation of these cracked films could be predicted from the observed distortions in the curves of electric cur-rent-time (j-t) deposition transients. The films with amorphous stmeture were obtained. The hysteresis loops suggested that the easily film were obtained when the deposition potential was -1025 mV, and [ MoO2-4]/[Co2 ] was 0.05 in solution, which exhibited a nicer soft-magnetic response.  相似文献   

12.
铝合金上电沉积Ni-P-CNTs复合镀层及其摩擦性能研究   总被引:1,自引:0,他引:1  
采用复合电沉积法在铝合金表面上制备了镍 磷 碳纳米管(Ni-P-CNTs)复合镀层,并用X射线衍射(XRD)和扫描电镜(SEM)对其进行了表征,分析了电流密度和镀液中碳纳米管的质量浓度对复合镀层形貌及其摩擦磨损性能的影响.当电流密度为3.0 A/dm2时可以得到表面光亮、平整的复合镀层,复合镀层中碳纳米管体积分数随着镀液中碳纳米管质量浓度的增加而增加.Ni-P-CNTs复合镀层比Ni-P镀层具有更高的硬度、耐磨性能和更低的摩擦系数.随着复合镀层中碳纳米管体积分数的增加,复合镀层的磨损量和摩擦系数逐渐降低.复合镀层摩擦性能的改善是由于碳纳米管具有优异的力学性能和良好的自润滑性能.  相似文献   

13.
The electrochemical behaviors of n-type silicon wafers in silica-based slurry were investigated, and the influences of the pH value and solid content of the slurry on the corrosion of silicon wafers were studied by using electrochemical DC polarization and AC impedance techniques. The results revealed that these factors affected the corrosion behaviors of silicon wafers to different degrees and had their suitable parameters that made the maximum corrosion rate of the wafers. The corrosion potential of (100) surface was lower than that of (111), whereas the current density of (100) was much higher than that of (111).  相似文献   

14.
1INTRODUCTION Electrodepositiontechniqueiswidelyusedto preparefilmsandpowdersatlowtemperaturedue tothehighenergydensityaccumulatinginsolutionneartheelectrodesurface.Recently,manymetal oxides,suchasZnO,ZrO2,Bi2O3,WO3,etal,havebeenpreparedbyelectrodepositiontech nique[16].However,sofarthepreparationof SnO2filmoncopperfoilhasnotbeenreportedyet.InordertouseSnO2filmasanodematerialin lithiumionbatteries,SnO2filmwithsmallparticle sizedepositeddirectlyoncopperfoiliswelcome.Becausenoconducti…  相似文献   

15.
钛合金表面激光熔覆Cr3C2/Ni基合金复合涂层的微观组织   总被引:1,自引:0,他引:1  
将质量分数为25%的Cr3C2/Ni基合金混合粉末预置在TCA合金表面,利用5kW横流CO2激光器进行激光熔覆试验,得到Ni基Cr3C2复合涂层.利用SEM和XRD对熔覆层的微观组织和相组成进行了分析,采用HXD—1000T数字式显微硬度计测量了熔覆层的硬度.结果表明,Ni+Cr3C2复合涂层存在γ-Ni、TiC、CrTC扑M23(C,B)6和CrB等相,熔覆层硬度在600~900HV之间.  相似文献   

16.
1 INTRODUCTIONGoldisquitestableanddifficulttodissolveinacommonmineralacid .However ,becausethereisadelectroniclayerunfilledingoldatomicstructure ,goldcanbecombinedwithmanychemicalagentstoformstablecomplexions,causingthepotentialofgoldinasolutiontodecreaseandgoldtodissolveinthesolutioneasily .Basedonthisprinciple ,cyanideisanefficientlixiviatingagentofgold ,andhasbeenwidelyusedtoextractgoldfrom primaryandsecondaryresources .However ,itisthemosttoxicandnotbeneficialtoen vironmentprotection…  相似文献   

17.
通过极化曲线测量,对氨络合物体系中镍阴极电沉积电化学行为进行研究,系统探讨了溶液中总镍离子浓度、氨水浓度、氯化铵浓度、阴离子及温度等工艺条件对镍阴极还原的影响。研究结果表明:镍放电电流随着总镍离子浓度的上升而上升,随氨水浓度的升高而降低;在1—4mol/L氯化铵浓度范围内,镍放电电流随其浓度的降低而升高,而当氯化铵浓度低于1mol/L时,镍放电电流出现下降的现象;氯盐氨络合物体系中镍阴极放电电流明显高于硫酸盐氨络合物体系镍放电电流,镍放电电流随温度的升高而升高。根据实验现象,进一步分析了镍阴极电沉积电化学行为变化的原因。  相似文献   

18.
A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnO2 thin films was proposed with current density of 8 mA/cm2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0.03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150 ℃ for 10 h.  相似文献   

19.
采用电刷镀技术制取了合金镀层和复合镀层,利用扫描电镜、能谱仪、射线衍射仪分别对镀层原始状态及其腐蚀磨损过程中的组织形貌、成分、和相组成进行了观察、分析.研究了在不同的载荷和速度条件下两种镀层的腐蚀磨损特性及腐蚀磨损的协同作用.结果表明本实验条件下,在较低的载荷和速度下,复合镀层的耐腐蚀磨损性能优于合金镀层,随着载荷和摩擦速度的增大,复合镀层的耐腐蚀磨损性能下降较合金镀层快.  相似文献   

20.
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3·9H2O,LiAc·H2O,NH4H2PO4 and citric acid as raw materials,and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and electrochemical tests.The Fe2P content,morphology and electrochemical performance of LiFePO4/(C+Fe2P) composite depend on the calcination tempera...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号