首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 观察环氧合酶-2(COX-2)抑制剂塞来昔布对白血病细胞株HL-60的化疗增敏作用,并对其机制进行初步探讨.方法 MTT法评估塞来昔布、多柔比星及二者联合对HL-60细胞的生长抑制效应;流式细胞术(FCM)检测细胞的凋亡;反转录聚合酶链反应(RT-PCR)检测Survivin基因的表达;Western blotting检测Survivin蛋白的表达.结果 多柔比星联合塞来昔布5和10μmol/L对HL-60细胞的半数抑制浓度(IC50)分别为0.25及0.16μg/ml,明显低于多柔比星单用的IC50(0.48μg/ml);多柔比星0.10μg/ml联合10 μmol/L塞来昔布下调Survivin基因mRNA及蛋白的表达;联合塞来昔布5和10 μmol/L的凋亡率[分别为(13.07±1.66)%及(22.36±1.84)%]较多柔比星0.10μg/ml单用[(5.72±1.25)%]明显增加(P<0.01).结论 COX-2抑制剂塞来昔布对白血病细胞株HL-60具有明显的化疗增敏作用,其初步机制涉及下调Survivin的表达,增加细胞凋亡.  相似文献   

2.
AIM: To study the mechanisms of the resistance to harringtonine (Har) in the HL60 cells. METHODS: Growth inhibition, karyotype analysis, flow cytometry, Western blotting and polymerase chain reaction. RESULTS: The Har-resistant HL60 cell line, named HR20, showed cross resistance to homoharringtonine, doxorubicin, daunorubicin, vincristine, and colchicine. The growth doubling time and the cell numbers in G1 phase were increased. The accumulation of cellular daunorubicin in the resistant cells was obviously reduced, but distinctly increased by tetrandrine and verapamil. The numbers of telocentromeric chromosome increased and the chromosomal aberration more occured in the resistant cells. The resistant cells overexpressed multidrug resistant mdr-1 gene and P-glycoprotein 150 kDa. CONCLUSION: The Har-resistant HL60 cell strain belonged to a multidrug resistance strain, overexpressing mdr-1 gene and P-glycoprotein.  相似文献   

3.
GF120918, at 250 ng/ml, increased the sensitivity of a P-glycoprotein (P-gp)-mediated multidrug resistant (MDR) small cell lung cancer cell line (H69/LX4) to the P-gp substrates, paclitaxel, taxotere, vinblastine, vinorelbine, daunorubicin and etoposide to levels which were either greater (in the case of etoposide) or close to that of the parent cell line (H69/P). This was achieved in spite of the great variation in the levels of resistance of the MDR cell line for the various anti-cancer drugs tested. These data suggest that GF120918 is a potent antagonist of P-gp mediated multidrug resistance, even in the case of high levels of resistance, as was the case with paclitaxel and taxotere (2560 and 2215 fold more than the sensitive parent cell line respectively).  相似文献   

4.
In this study, we have examined the in vitro chemosensitizing activity of difloxacin, a quinolone antimicrobial agent, in the multidrug-resistant human myeloid leukemia HL-60/AR cell line. HL-60/AR cells were found to overexpress multidrug resistance-associated protein (MRP) mRNA as compared to HL-60 cells. Difloxacin, in a concentration-dependent manner, increased the sensitivity of HL-60/AR cells to daunorubicin, adriamycin, and vincristine, and partially corrected the altered drug transport. In addition, difloxacin corrected subcellular distribution of adriamycin by inducing redistribution of the drug from the perinuclear region to the nucleus in HL-60/AR cells. The chemosensitizing effect of difloxacin was observed at clinically achievable concentrations. We conclude that difloxacin is an effective chemosensitizer of MRP-associated multidrug-resistant tumor cells and is a potential candidate for clinical use to reverse multidrug resistance.  相似文献   

5.
A resistant cell line (HL-60R) was selected by incubating HL-60 cells with increasing concentrations of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) and used to examine the mechanism of resistance to the antineoplastic ether-linked lipid. The HL-60R cells exhibited a > 10-fold increase in resistance when measured by [3H]-thymidine incorporation in comparison to the HL-60 cell line. ET-18-OCH3 binding occurred at 4 degrees C and was not saturable at the concentrations tested (1-100 microM), indicating that the binding was receptor-independent. At 4 degrees C, association of ET-18-OCH3 was low for each cell line. AT 37 degrees C, uptake in the HL-60 cells was approximately 5-fold greater in comparison to HL-60R cells at each concentration tested. However, when the cellular content of ET-18-OCH3 was equal, both cell lines experienced similar declines in cell growth. Cellular incorporation of ether lipid was determined using serum-free media and in the presence of serum albumin or lipoproteins. Reduced uptake by the resistant cell line was observed only in the presence of albumin. A greater proportion of ether lipid could be removed from prelabeled HL-60R cells than from HL-60 cells, by an albumin wash procedure, indicating an increased rate of internalization and retention by the sensitive cell line. ET-18-OCH3 uptake in the HL-60 cell line was also more sensitive to treatment with endocytic (chloroquine, monensin) or metabolic (NaF, KCN) inhibitors. These results suggest that uptake is the principal determinant influencing sensitivity of the resistant cell line and consists of receptor-independent binding followed by internalization. Differential uptake requires the presence of serum albumin and is dependent on the energy-dependent endocytosis of the ether lipid.  相似文献   

6.
A number of small and lipophilic cations are able to reverse in vitro the resistance to anthracyclines and other natural products through their interaction with P-glycoprotein or P-gp. However, some modulators do not interact with P-gp. We have demonstrated in a previous a work, using confocal laser microspectrofluorometry, that quinine does not increase nuclear anthracycline uptake in multidrug-resistant Chinese hamster ovary LR73 cells. In this case the LR73 cells were transfected with the mdr1 gene. Moreover, quinine induced in these cells an increase of mdr1 gene expression. In the present study, we investigated verapamil and quinine for their ability to increase nuclear pirarubicin uptake in multidrug-resistant K562R and CEMR human leukemic cell lines. These two cell lines resist, respectively, to doxorubicin and vinblastine and both overexpress the P-gp. Verapamil was able to restore nuclear pirarubicin in both cell lines. On the other hand, quinine was unable to significantly increase nuclear pirarubicin uptake. Both modulators were able to restore pirarubicin sensitivity in both resistant cell lines. After treatment with quinine, mdr1 gene and P-gp expression was not significantly altered as observed previously in the LR73 cells. This suggest that the effect of quinine on mdr1 gene expression is dependent on the cell line studied. These data suggest that quinine could modify the molecular environment of anthracyclines and/or its binding to a possible cytoplasmic target, and that the mechanisms by which anthracyclines induce cell death, and ways by which chemotherapy fails in multidrug-resistant leukemic cells remain complex and are related to more than one target.  相似文献   

7.
Numerous chemotherapeutic agents act via stabilization of a topoisomerase (topo) II-DNA complex. HL-60/AMSA, a human leukemia cell line, is resistant to intercalator-mediated DNA complex formation and cytotoxicity. HL-60/AMSA contains a mutant form of topo IIalpha that was thought to explain this resistance. However, our present data show that expression of topo IIbeta RNA in HL-60/AMSA is only 10% of that in HL-60, and topo IIbeta protein levels are undetectable. Southern analysis of topo IIbeta shows no differences in gene dosage between the two cell lines but does show differences in the restriction patterns. These data suggest that decreased topo IIbeta expression may contribute to the intercalator resistance of HL-60/AMSA cells.  相似文献   

8.
9.
Maintenance and regulation of intracellular pH (pHi) was studied in wild-type Ehrlich ascites tumor cells (EHR2) and five progressively daunorubicin-resistant, P-glycoprotein (P-gp)-expressing strains, the maximally resistant of which is EHR2/1.3. Steady-state pHi was similar in cells expressing different amounts of P-gp, in the absence and presence of glucose. In EHR2/1.3, glucose-induced acidification was reduced, and proton efflux was increased, compared to the wild-type EHR2, differences which were not caused by increased activity of a Na+/H+ exchanger in the resistant cells. Comparing all six cell lines, no evidence was found for a correlation between the amount of P-gp in the membrane and pHi regulation, which was also unaffected by P-gp modulators. However, a correlation was seen between relative resistance/daunorubicin accumulation and acid extrusion rate, which is likely to be due to aspects of development of drug resistance other than P-gp.  相似文献   

10.
Macrophages are important constituents of the immune system by exerting phagocytosis on invading pathogens as well as secreting various immunoregulatory factors. Generation of human macrophage hybridoma has not been possible so far due to the lack of an appropriate fusion partner cell line. In the present study, an 8'-azaguanine resistant cell line, termed HL-60R, was established by drug selection of the promyelocytic cell line HL-60. This novel cell line showed resistance to high concentrations of 8'-azaguanine and was sensitive to aminopterin. These characteristics make it suitable for serving as a potential fusion partner cell line in the development of macrophage hybridoma. Cell-surface analysis by FACS revealed that HL-60R cells per se do not express MHC-class II molecules or the macrophage marker, CD11b. PEG-mediated fusion of HL-60R was performed with PBMC-derived human macrophages. Fluorescence labelling of ex vivo isolated macrophages prior to fusion and subsequent FACS analysis showed that PEG-4000 is a more effective fusion agent than PEG-1500. The generation of this novel fusion partner cell line opens the possibility for development of human macrophage hybridoma or other cell lines from myelocytic origin. Such hybridoma clones will not only enable a more convenient study of these cell but will also provide an excellent host site for the proper production and expression of various recombinant proteins from myelocytic origin in vitro.  相似文献   

11.
Nitric oxide (NO) released from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1,2-diolate (DETA/NO or NOC-18) induces apoptosis in human leukemia HL-60 cells. In this study, we isolated a HL-60 variant cell line, HL-NR6, that is resistant to DETA/NO toxicity as assessed by DNA fragmentation, morphology, and colony forming ability. The variant cells also showed resistance to reactive oxygen species (ROS) such as superoxide and hydrogen peroxide as well as NO donors, but not to anti-tumor drugs. We found that HL-NR6 cells when compared with HL-60 cells possessed twice the activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase, but no change in Mn-SOD nor in glutathione peroxidase. Immunoblotting confirmed the high levels of both enzymes in the variant cell. We also observed that ROS generation following DETA/NO exposure was substantially higher in HL-60 cells than in HL-NR6 cells, using the 2',7'-dichlorofluorescein fluorometric method. Moreover, the SOD mimetic Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin and exogenous catalase effectively attenuated DETA/NO-elicited DNA fragmentation in HL-60 cells. Taken together, these data suggested that the NO resistance in HL-NR6 cells is associated with the increased Cu,Zn-SOD/catalase and that NO-mediated apoptosis in HL-60 cells is correlated with the generation of ROS and derived molecules like peroxynitrite.  相似文献   

12.
A Chinese hamster ovary (CHO) cell line highly resistant to the non-cleavable complex-forming topoisomerase II inhibitor dexrazoxane (ICRF-187, Zinecard) was selected. The resistant cell line (DZR) was 1500-fold resistant (IC50 = 2800 vs 1.8 microM) to continuous dexrazoxane exposure. DZR cells were also cross-resistant (8- to 500-fold) to other bisdioxopiperazines (ICRF-193, ICRF-154, and ICRF-186), and somewhat cross-resistant (4- to 14-fold) to anthracyclines (daunorubicin, doxorubicin, epirubicin, and idarubicin) and etoposide (8.5-fold), but not to the other non-cleavable complex-forming topoisomerase II inhibitors suramin and merbarone. The cytotoxicity of dexrazoxane to both cell lines was unchanged in the presence of the membrane-active agent verapamil. DZR cells were 9-fold resistant to dexrazoxane-mediated inhibition of topoisomerase II DNA decatenation activity compared with CHO cells (IC50 = 400 vs 45 microM), but were only 1.4-fold (IC50 = 110 vs 83 microM) resistant to etoposide. DZR cells contained one-half the level of topoisomerase II protein compared with parental CHO cells. However, the specific activity for decatenation using nuclear extract topoisomerase II was unchanged. Etoposide (100 microM)-induced topoisomerase II-DNA complexes in DZR cells and isolated nuclei were similarly one-half the level found in CHO cells and in isolated nuclei. However, the ability of 500 microM dexrazoxane to inhibit etoposide (100 microM)-induced topoisomerase II-DNA covalent complexes was reduced 4- to 6-fold in both DZR cells and nuclei compared with CHO cells and nuclei. In contrast, there was no differential ability of aclarubicin or merbarone to inhibit etoposide-induced topoisomerase II-DNA complexes in CHO compared with DZR cells and isolated nuclei. It was concluded that the DZR cell line acquired its resistance to dexrazoxane mainly through an alteration in the topoisomerase II target.  相似文献   

13.
Previous reports suggest that resistance to mitoxantrone in different tumor cell lines is unrelated to the overexpression of p-glycoprotein. In order to determine the role of p-glycoprotein in the cellular pharmacology of mitoxantrone flow cytometry and confocal microscopy were used to study two human myeloid leukemia cell lines selected for resistance to mitoxantrone (HL-60MX2) and doxorubicin (HL-60DOX). To optimize the detection of intracellular mitoxantrone, we determined the maximum excitation (607 nm) and emission (684 nm) wavelength by fluorescence spectroscopy. The modified flow cytometric conditions using 568.2 nm laser emission for excitation and a 620 nm long pass filter for fluorescence collection resulted in a 1-log increase in sensitivity, compared with standard 488-nm laser excitation. Uptake and retention of mitoxantrone in the presence of verapamil, a calcium channel blocker known to inhibit p-glycoprotein, were analyzed. Our results showed no change in uptake and retention of the drug in p-glycoprotein-negative mitoxantrone-resistant HL-60MX2 cells and in its sensitive parental line, HL-60s. In contrast, 3.1- and 2.4-fold increases were found in uptake and retention of mitoxantrone in p-glycoprotein-positive cells (HL-60DOX) incubated with verapamil. Confocal microscopy of intracellular drug distribution demonstrated reduced nuclear uptake, which could be reversed by verapamil, in HL-60DOX. A characteristic punctate pattern was observed for the intracytoplasmic drug distribution in HL-60DOX and HL-60MX2 cells and was partially modified by the presence of verapamil in HL-60DOX cells. Verapamil increased cytotoxicity of mitoxantrone two-fold in HL-60DOX cells, 1.4-fold in HL-60MX2, and had no effect in HL-60s. Our study demonstrates that the cellular pharmacology of mitoxantrone is affected by p-glycoprotein and can be reversed at least in part by verapamil. Other mechanisms of resistance however, seem to play a determinant role in the modulation of mitoxantrone cytotoxicity.  相似文献   

14.
A drug-resistant cell line (EAC/Dox) was developed by repeated exposure of Ehrlich ascites carcinoma cells to Doxorubicin (Dox) in vivo in male albino Swiss mice (6-8 weeks old). The weekly i.p. injections of Dox to mice (2 or 4 mg/kg/week for 4 months) gave rise to Dox-resistant cell line EAC/Dox, which displayed typical multidrug resistant (MDR) features of cross-resistance to a number of structurally and functionally unrelated drugs like doxorubicin, vinblastine and cisplatin. Moreover, the EAC/Dox cell line had lower drug accumulation than drug-sensitive (EAC/S) cells. Study of Western blots and immunofluorescence revealed that P-glycoprotein 170 kDa (P-gp) was absent in EAC/Dox cells. The drug resistance appeared to be due to the presence of a higher level of reduced glutathione (GSH) and glutathione S-transferase (GST) in EAC/Dox cells than in drug-sensitive (EAC/S) cells. The two structurally similar hydroxamic acid derivatives, i.e. oxalyl bis(N-phenyl)hydroxamic acid (X1) and succinyl bis(N-phenyl)hydroxamic acid (X2), having very low in vitro toxicity (IC50 value 250 microg/ ml), were investigated for their efficacy to reverse MDR. The compound X1 was able to reverse the effect of MDR and reduce GST in EAC/Dox cells. The compound X2 had no ability to reverse the effect of MDR. Further study on the mechanism of glutathione depletion and the resistance modifying property of X1 on other cell lines is warranted.  相似文献   

15.
We studied the capacity of doxorubicin encapsulation in liposomes of various lipid compositions to circumvent multidrug resistance in several variants of the C6 rat glioblastoma cell line in culture, and to inhibit azidopine binding to membranes isolated from these cells. Three formulations of liposomes were prepared: (a) phosphatidylcholine (PC)/phosphatidylserine (PS)/cholesterol (cho) at a 9/24 ratio; (b) PC/cardiolipin (CL)/cho at 10/1/4 ratio; (c) dipalmitoylphosphatidylcholine (DPPC)/cho at 11/4 ratio. Unloaded liposomes presented no cytotoxicity against sensitive or resistant cells. Doxorubicin encapsulated in PC/PS/cho and PC/CL/cho liposomes had a cytotoxic activity close to that of free doxorubicin, whereas doxorubicin encapsulated in DPPC/cho liposomes was significantly less active than free doxorubicin in sensitive as well as in two of the three multidrug resistant cell lines, and as active as free doxorubicin in the third one. Free doxorubicin was able to decrease 50% of [3H]azidopine photolabelling to P-glycoprotein at a concentration of 40 microM; doxorubicin encapsulated in PC/CL/cho or PC/PS/cho liposomes was able to inhibit [3H]azidopine binding similarly as free drug, whereas doxorubicin encapsulated in DPPC/cho liposomes had no significant effect on this parameter. Unloaded liposomes of either lipid composition had no effect on [3H]azidopine binding. Together with physical studies performed in parallel on doxorubicin trapping in liposomes (J Liposome Res 1993, 3, 753-766), these results suggest that doxorubicin leaked out of fluid liposomes (PC/PS/cho or PC/CL/cho), whereas rigid liposomes (DPPC/cho) were able to sequester the drug more efficiently. In that case, however, no availability of the drug to the cells was possible and only a weak cytotoxicity was exhibited, especially without any favourable effect on multidrug resistance. In conclusion, no reversal of doxorubicin resistance was found to occur through liposomal encapsulation of the drug.  相似文献   

16.
When five substituents of hapalosin were placed on D-glucose, molecular modeling revealed that the substituents on mimetics 2 and 3 occupy similar spatial positions as the corresponding substituents on hapalosin. Mimetic 3 and all the glucopyranoside intermediates generated in its synthesis were assessed for their ability to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) or the multidrug resistance-associated protein (MRP). None of the sugar compounds were as effective as hapalosin in inhibiting P-gp in cytotoxicity and drug accumulation assays using MCF-7/ADR cells. By contrast, four D-glucose compounds exhibited similar efficacy as hapalosin in antagonizing MRP in cytotoxicity assays with HL-60/ADR cells.  相似文献   

17.
18.
The level and fate of hMSH3 (human MutS homolog 3) were examined in the promyelocytic leukemia cell line HL-60 and its methotrexate-resistant derivative HL-60R, which is drug resistant by virtue of an amplification event that spans the dihydrofolate reductase (DHFR) and MSH3 genes. Nuclear extracts from HL-60 and HL-60R cells were subjected to an identical, rapid purification protocol that efficiently captures heterodimeric hMutSalpha (hMSH2. hMSH6) and hMutSbeta (hMSH2.hMSH3). In HL-60 extracts the hMutSalpha to hMutSbeta ratio is roughly 6:1, whereas in methotrexate-resistant HL-60R cells the ratio is less than 1:100, due to overproduction of hMSH3 and heterodimer formation of this protein with virtually all the nuclear hMSH2. This shift is associated with marked reduction in the efficiency of base-base mismatch and hypermutability at the hypoxanthine phosphoribosyltransferase (HPRT) locus. Purified hMutSalpha and hMutSbeta display partial overlap in mismatch repair specificity: both participate in repair of a dinucleotide insertion-deletion heterology, but only hMutSalpha restores base-base mismatch repair to extracts of HL-60R cells or hMSH2-deficient LoVo colorectal tumor cells.  相似文献   

19.
We compared test methods based on specific mechanisms of daunorubicin (DNR) resistance to more global procedures. Assessment of P-glycoprotein (P-gp) expression and function by means of immunocytochemistry, DNR accumulation, and modulation of resistance and accumulation by the P-gp inhibitor cyclosporin A (CsA) were selected as parameters for multidrug resistance (MDR). On the other hand, we used the MTT assay and measured apoptosis and proliferative activity (S- and G2M-phases of the cell cycle) by flow cytometry. Validation of test methods was achieved for four leukemic cell lines (HL-60, KG-1a, K562/WT, K562/ADM). This battery of tests was then applied to mononuclear cells (MNC) from 18 leukemic patients. Low proficiency of MNC to undergo apoptosis and low proliferative activity rather than P-gp-mediated MDR correlated with DNR resistance as measured by the MTT assay. Bell-shaped dose-response curves for apoptosis, however, which reflect a switch from the apoptotic to the necrotic death mode with increasing cellular damage tend to limit practicability in clinical testing, because appropriate dose range and time points need to be explored. Thus, measurement of apoptosis by flow cytometry may be less convenient than the MTT assay for determination of chemosensitivity, if clinical samples with unknown patterns of responsiveness are to be tested. Spontaneous apoptosis in untreated MNC following 24 h incubation in vitro correlated significantly with DNR sensitivity in the MTT assay. A lack of essential viability factors (eg growth factors or cytokines) in vitro which are known to prevent apoptosis may contribute to DNR sensitivity.  相似文献   

20.
Acquired drug resistance is a major factor in the failure of doxorubicin-based chemotherapy in breast cancer. We determined the ability of megestrol acetate and/or tamoxifen to reverse doxorubicin drug resistance in a doxorubicin-resistant breast cancer line (the human MCF-7/ADR). The cytotoxicity of doxorubicin, megestrol acetate, and/or tamoxifen was determined in the sensitive and resistant cell lines utilizing the sulphorhodamine B assay. Tamoxifen alone produced an IC50 (concentration resulting in 50% inhibition of control growth) of 10.6 microM, whereas megestrol acetate alone resulted in an IC50 of 48.7 microM in the MCF-7/ADR cell line. The IC50 of doxorubicin in MCF-7/ADR was 1.9 microM. Neither megestrol acetate alone nor tamoxifen alone at 1 or 5 microM altered the IC50 of doxorubicin. However, the combination of tamoxifen (1 or 5 microM) and megestrol acetate (1 or 5 microM) synergistically sensitized MCF-7/ADR cells. Additionally, megestrol acetate and tamoxifen inhibited iodoarylazidoprazosin binding to P-glycoprotein, and, in their presence, there was an increased doxorubicin accumulation in the MCF-7/ADR cells. Furthermore, the combination of tamoxifen and megestrol acetate had much less effect on the cytotoxicity of doxorubicin in MCF-7 wild-type cells. Clinically achievable concentrations of tamoxifen and megestrol acetate can largely sensitize MCF-7/ADR to doxorubicin. The combination of these three drugs in a clinical trial may be informative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号