首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified diffusion-based mathematical model is proposed to describe the moisture movement during continuous and intermittent drying of Eucalyptus saligna. This model includes the temperature change, the surface drying coefficient (β n ) and 2 diffusion coefficients [from green to FSP (D f ) and from FSP to dry condition (D o )] as important parameters. The final model expression obtained was M?=?exp (??25 β n 2 D t /l2) with the β n used was 1.5807 kg m?2 s?1, the D f was 2.26?×?10?11 m2 s?1, and the D o was 5.85?×?10?12 m2 s?1. The range of temperature change between heating and non-heating phases in the intermittent drying regimes was from 24.9 to 31.8 °C. The R2 values obtained when the model was fitted into the drying data of different intermittent regimes ranged from 71.5 to 85.9%. The R2 value was 87.4% when the model was fitted into continuous trial data. The high values of R2 indicate that the model can be used to understand the moisture reduction both in intermittent and continuous regimes.  相似文献   

2.
The water vapor permeance (WVP; g m?2 d?1 Pa?1) of packaging films quantifying the water vapor transfer rate between foods and its surroundings is usually determined in units operating under steady-state conditions that do not necessarily reflect food handling scenarios. This study evaluated the determination of the WVP of a polyethylene (PE) film by steady-state method ASTM F1249-06 using a permeability cell and unsteady-state method ASTM E96/E96M in which 102 vacuum-sealed PE bags containing silica gel were stored (37.8 °C, 75% relative humidity) and weighed over 25 days. Average steady-state WVP (2.935 ± 0.365 × 10?3, n = 4) fell within the 95% quantiles of unsteady-state WVP values (1.818–3.183 × 10?3, n = 2142). Moisture uptake of dehydrated mango stored at 37.8 °C and 75% relative humidity was predicted with WVP values obtained by both methods. Predictions were validated by monitoring over 25 days the weight gain of 100 PE bags with dry mango. Experimental moisture averages during storage fell within one standard deviation of predictions using the unsteady-state WVP (R 2 = 0.974). The same was observed only until day 15 for predictions obtained with the steady-state WVP. Calculations for days 20–25 overestimated the moisture uptake by 6.0–7.2%, resulting in registered R 2 = 0.924. The unsteady-state WVP determination is low-cost, uses large numbers of film samples, and allowed more accurate predictions of dry mango moisture uptake. Knowledge of the moisture uptake controlled by the film WVP is essential when predicting the safety and quality changes limiting the shelf-life of foods.  相似文献   

3.
Microwave drying is usually combined with vacuum environment in conjunction with hot air flow to draw the moisture rapidly. The moisture content of the vegetables undergoing drying is hard to measure online. This research designed a microwave vacuum drying (MVD)-low-field nuclear magnetic resonance (NMR) smart device and investigated the feasibility of NMR method for online measurement of state of moisture during MVD. The relation between the signal amplitude (A 2) and the true moisture content (M 1) of six kinds of vegetables (mushroom, carrot, potato, lotus, edamame, vegetable corn) was fitted to estimate if NMR can measure the M 1 of vegetables directly. Results showed that A 2 and M 1 of different fresh vegetables had no single empirical mathematical model to fit. However, for each kind of these vegetables, the A 2 and corresponding M 1 in different MVD stages showed a significant linear relationship. The predicted moisture content (M 2) of mushroom: M 2 = 5.25351 × 10?4 A 2 ? 0.34042, R = 0.996; carrot: M 2 = 5.78756 × 10?4 A 2 ? 0.14108, R = 0.998; potato: M 2 = 3.10019 × 10?4 A 2 ? 0.10612, R = 0.991; lotus: M 2 = 2.32415 × 10?4 A 2 ? 0.01573, R = 0.998; edamame: M 2 = 3.13310 × 10?4 A 2 ? 0.4198, R = 0.996; vegetable corn: M 2 = 1.69461 × 10?4 A 2 ? 0.09063, R = 0.995. The linear models between M 2 and A 2 were able to estimate the end point (M 1 < 8%) of MVD with a high accuracy (P > 0.950).  相似文献   

4.
Structural and rheological characterization of reconstituted hydrogels developed from A. vera non-fibrous alcohol insoluble residue (NFAIR) powder using different methods [viz., shaking (S), heating-shaking (HS), and heating (H)] and concentrations (viz., 0.2–1.6 %, w/v) was carried out. Functional group distribution by FTIR spectroscopy and Congo red (CR) method revealed the presence of acetylated acemannan in A. vera powder. Dynamic oscillation studies of A. vera (NFAIR) fluids at all concentrations of 0.2–1.6 %, w/v, showed gel strength in the order of H > HS > S method. However, in H method, increase in concentration from 0.2 to 1.6 %, w/v showed the conformational transition from semi-diluted solution to weak gel nature. Rheological models described the effect of heating temperatures (HT); 30–90 °C, and times (Ht); 15–60 min on viscoelastic behavior in reconstituted A. vera fluids. The reconstituted A. vera hydrogel prepared with a concentration of 1.6 %, w/v using 50 °C (HT) and 30 min (Ht) condition showed a good agreement with the Power law (storage modulus, G′) and Weak gel model (complex modulus, G*) fitted data (R2 > 0.94) resulting higher viscoelastic moduli intercepts; G0 (71.5 Pa s n), G0 (33.5 Pa s n), lower slopes; n′ (0.22), n″ (0.06), higher network strength (A F , 121.3 Pa s1/z ) and number of network (z, 5.3) values. The obtained results suggested that heating at 50 °C/30 min can develop aqueous weak gel networks of A. vera with enhanced gel strength which may be utilized as a novel gelling agent for wide variety of targeted applications in food and pharmaceutical sectors.  相似文献   

5.
Juices from two varieties of cactus pear, a green (Opuntia ficus-indica) and a red (Opuntia streptacantha), were obtained and concentrated by evaporation. Both fruit varieties and their juices at different concentrations were characterized. Green cactus pears had significantly higher amount of pulp than red cactus pears; the peel of O. ficus-indica represented only 38 versus 52 % of the fruit for the O. streptacantha. Both varieties had no significant differences on moisture, density, pH, and titratable acidity, in contrary to soluble solids. Juice was concentrated under vacuum conditions to reach a final concentration of 42, 53–55, and 58–60 °Brix, respectively, and stored under refrigeration (10 °C) during 4 weeks. Physicochemical properties of the pears and juices were determined as fresh items (time zero) and every week for the concentrate juices through storage; similarly, flow parameters were measured at 10 and 25 °C. Concentrate density (1160–1283 kg/m3) was mainly affected by final soluble solids, while pH and acidity were affected differently depending on the variety. Concentrated juices at 42 °Brix were considered with Newtonian behavior with a viscosity of 2–22 mPa s, while those at higher concentrations were of pseudoplastic nature (n < 1.0 and K > 69 mPa sn). Power Law model fitted better the flow behavior than Herschel-Bulkley model of concentrates of both varieties. Temperature, solid concentration, and/or storage time affected the consistency coefficient (K) and flow index (n) depending on the cactus pear variety. Overall, those concentrated juices from O. streptacantha were more stable and exhibited lower apparent viscosity.  相似文献   

6.
Potatoes are an important food in many regions of the world and are commonly used in a variety of food products. Thermal transition and thermo-physical properties of potatoes are important in order to design efficient food processes and select appropriate storage conditions. In this study, we determined the thermal transitions and thermophysical properties of raw and blanched/par-fried potato for a temperature range of ??32 to 21.1 °C. Using differential scanning calorimetry, we found an initial freezing point (Tf) at ??1.8?±?0.1 °C, an onset of melting (Tm) at ??9.9?±?0.2 °C and an unfreezable water content (Xw) for maximally freeze-concentrated raw potato at 0.21 kg water/kg potato. Corresponding values for blanched/par-fried potatoes were ??0.9?±?0.1 °C, ??11.0?±?0.2 °C and 0.18 kg water/kg potato. Results show that an increase in solids content decreased Tf of both raw and blanched potatoes. We modelled the relationship between them using the Chen model. The apparent specific heat (Capp) increased around Tf to 31.7?±?1.13 kJ/kg K for raw potato and 26.7?±?0.62 kJ/kg K for blanched/par-fried potato. For frozen raw potato at ??32 °C, thermal diffusivity (α) was 0.89?±?0.01?×?10??6 m2/s and thermal conductivity (k), 1.82?±?0.14 W/m K, respectively. These values were higher for frozen raw potato than for the unfrozen raw potato (0.15?±?0.01?×?10??6 m2/s and 0.56?±?0.08 W/m K, respectively at 21.1 °C). The apparent density (ρ) of frozen raw potato (992?±?4.00 kg/m3 at ??32 °C) was less than that for unfrozen raw potato (1053?±?4.00 kg/m3 at 21.1 °C), and a similar trend was obtained for blanched/par-fried potato (993?±?2.00 kg/m3 at ??32 °C and 1188?±?7.00 kg/m3 at 21.1 °C, respectively). This study established a correlation between thermo-physical properties and temperature. Findings may be used to inform the design and optimization of freezing processes and frozen storage for potato products.  相似文献   

7.
This work determines the radical scavenging activity of antioxidants and berry extracts based on the heat generated during their reaction with hydrogen peroxide, under isothermal condition (25 °C). After addition of H2O2 to a water solution containing antioxidants, an exothermic heat flow appeared. After an initial damping time, the signal decayed exponentially, following a first-order kinetic. Through an iterative fitting routine, both thermodynamic (ΔH) and kinetic (k) information were achieved. Such approach was applied toward relevant food antioxidants, revealing that the fastest reactivity (k) was for tannic acid > gallic acid > caffeic acid > ascorbic acid. Interestingly, k was inversely correlated with ΔH (r = ?0.96) and with the DPPH test (r = ?0.98). Apparently, strong radical scavengers show faster kinetics and lower ΔH-values, as expected, respectively, from a high reactivity toward peroxyl radical and efficient delocalization capacity. Such approach was finally applied to berry extracts (mixed grape seed and skin; chokeberries; grape seed; goji berries). The resulting ΔH-values were correlated with three indices, namely, total phenol, amperometry, and DPPH test. However, k-values largely deviated from these indices. Such discrepancy was explained considering that none of these indices is a “true” measure of the kinetic of the reaction, but only express an apparent concentration. Conversely, reaction calorimetry provides directly and simultaneously both thermodynamic and kinetic properties of the radical scavenging reactivity of antioxidants or natural extracts.  相似文献   

8.
The effectiveness of pulsed light (PL) treatments to inhibit microorganisms on fresh-cut tomatoes (Lycopersicon esculentum Mill., cv. Daniela) was investigated. Tomato slices inoculated with Escherichia coli or Listeria innocua were exposed to PL treatments (4, 6, or 8 J cm?2 fluence) and kept cold at 4 °C for 20 days. L. innocua and E. coli counts, gases in the headspace of the containers (O2 and CO2), pH, titratable acidity, and soluble solid content were monitored throughout the cold storage. The PL treatments reduced significantly (p < 0.05) initial loads of both microbes. The effect of the PL fluence on the survival number of microoganisms was described by a log-linear model (R 2 = 0.849–0.999). At any fixed time within the cold storing, the microbial counts for untreated samples were always higher than those cut tomatoes that had been previously PL-treated. The behavior of L. innocua and E. coli during the storage were well adjusted (R 2 > 0.930) by Gompertzian models; the studied microorganisms exhibited different patterns during the storage period. On the other hand, O2 and CO2 partial pressures in containers with fresh-cut tomatoes were also significantly affected by PL treatments (p < 0.05). The highest PL fluence caused the greatest changes of O2 and CO2 contents. In addition, the application of PL triggered an acceleration of the O2 consumption during the cold stage. PL treatments might be used to effectively extend the safety of fresh-cut tomatoes over 12 days of storage against E. coli and L. innocua growth.  相似文献   

9.
The inactivation and photoreactivation response of six seafood-isolated Listeria monocytogenes and one Listeria innocua strain after pulsed light (PL) treatment was evaluated. The lower inactivation levels found after exposure of treated samples to daylight during the first 90 min of storage confirmed that both L. innocua and L. monocytogenes have the capability to photorepair PL-induced DNA damage upon appropriate conditions. Photoreactivation levels from 0.2 to 2.1 log CFU cm?2 were observed depending on treatment intensity (fluence) and Listeria strain. Complete photorepair of PL-caused damage was not found even after treatments inducing low inactivation levels. Photoreactivation increased up to 2.1 log with the applied fluence up to a threshold able to cause between 2.4 and 5.4 log reductions under dark storage. Photorepair was not avoided but lower photoreactivation was observed after higher fluence inducing more than 6 log reductions under dark storage. Both L. innocua and L. monocytogenes serotype 1/2b exhibited the highest photoreactivation levels whereas serotypes 1/2a showed the lowest ones. The overall inactivation and photoreactivation responses of tested Listeria strains were comparable indicating that L. innocua may be a good surrogate for the safe evaluation, optimization and validation of PL technology to control L. monocytogenes in food products and food processing facilities.  相似文献   

10.
Trypsin inhibitors could limit utilization of legumes in human nutrition, but they could also have beneficial health effects. The objective of this study was to measure trypsin inhibitor activity (TIA) of different legumes using microtiter plate method and to identify factors that contribute to uncertainty of TIA measurement. TIA measurements were performed on seeds of faba bean, pea, common vetch, soybean, and common bean cultivars. The significant effect of legume crop on TIA measurement uncertainty was confirmed with P = 0.045. Certain sources of measurement uncertainty were related with the content of trypsin inhibitors (Tis) in legume seeds. In respect to that, significant effect of level of sample dilution (P ? 0.001) was confirmed. Significant influence of the repeated absorbance measurement of sample reaction mixture on uncertainty of TIA measurement was identified (P ? 0.001), and it took 60% of overall TIA measurement uncertainty for soybean cultivars. TIA of soybean cultivars exceeded 90 TUI/mg. Repeated absorbance measurement of positive control reaction mixture took 70% of TIA measurement uncertainty of cultivars with TIA lesser than 4.5 TUI/mg. Graduated cylinder used for preparation of the final sample solutions took the range from 45 to 90% of overall TIA measurement uncertainty of the cultivars whose TIA were in the middle of previously mentioned. The uncertainty of TIA measurement of legume crops was not studied before; thus, this study pointed out that acquiring insight into factors contributing to uncertainty of TIA measurement could give directions for improvement of TIA testing if microtiter plate method is used.  相似文献   

11.
In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x 1), L/D ratio (x 2), barrel temperature (°C; x 3), and feed mix moisture content (%; x 4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed?>?80 rpm, L/D ratio?>?12, barrel temperature?>?80 °C, and feed mix moisture content?>?20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19?×?10?7 m3/s (x 1?=?139.08 rpm, x 2?=?15.90, x 3?=?99.56 °C, and x 4?=?59.72%) and 0.53?×?10?7 m3/s (x 1?=?59.65 rpm, x 2?=?11.93, x 3?=?68.98 °C, and x 4?=?20.04%).  相似文献   

12.
Vibrio cholerae is an important foodborne pathogen causing severe intestinal infectious diseases that have high incidence and mortality. Almost all of rapid testing methods including immunological and molecular assays for V. cholerae are incapable of distinguishing live cells from dead ones, which may overestimate the number of bacteria and result in many false positive results. To address the problems, live cell-specific dye such as propidium monoazide (PMA) is employed. The loop-mediated isothermal amplification (LAMP) assay is a nucleic acid amplification method that is fast, specific, and sensitive. In this study, we developed a real-time visual LAMP assay using PMA dye to detect thyA gene, thereby identifying viable V. cholerae cells. The results showed that only V. cholarae strains could be detected, and there was no cross-reaction with non-V. cholarae strains. Besides, the sensitivity of the PMA-LAMP assay was 1.1 × 102 CFU/mL and the entire reaction could be accomplished within 1 h. The sensitivity was on par with that of the PMA-qPCR assay. The detection limit in different artificially inoculated samples was 5 CFU/25 g materials for the tested pathogens. In the practical test, the PMA-LAMP assay performed well in comparison with PMA-qPCR and the culture method. Hence, PMA-LAMP assay can provide a highly effective and rapid approach for detecting viable V. cholerae.  相似文献   

13.
Osmotic dehydration effects on the kinetics and on some quality attributes of green banana slices (Musa cavendishii) at 25 °C with non-caloric solutes (glycerol, sorbitol, and a mixture of both) at concentrations varying from 40 to 60 g/100 g for up to 6 h were studied. The three-component diagram showed that the first pseudo-equilibrium was achieved, and the water pseudo-diffusion coefficient presented higher values with glycerol solutions. A modified Peleg’s model was applied to obtain the maximum water loss. Changes in green banana physical-chemical properties were observed: moisture content from 1.25 to 0.19 kg/kg dry basis, soluble solute content from 5.4 to 16.9 °Brix; total color-difference from 2.7 to 15.8; and the maximum biaxial extensional viscosity from 0.63 to 1.53 MPa s. Moreover, the obtained low chroma difference values suggest that the osmotically drying process may be a suitable technique to preserve the final color of green banana slices.  相似文献   

14.
Biodegradable films of chia by-products (mucilage and protein-rich fraction (PF)) incorporated with clove essential oil (CEO) were obtained and characterized. The effects of polymer concentration (PC; 1.0–3.0 %, w/v) and CEO concentration (0.1–1.0 %, v/v) were evaluated as well as the pH (7–10), using a 23 factorial design with four central points. The films exhibited moisture values between 11.6 and 52.1 % (d.b.), which decreased (p?<?0.05) with increasing PC and CEO. The thickness of the films increased (p?<?0.05) with increasing PC. PC and pH influenced (p?<?0.05) the lightness (L) and variation in color between red and green (a). The orientation of the color to yellow-blue hues (b) decreased significantly (p?<?0.05) with increasing PC. Transparency was significantly lower and higher (p?<?0.05) than PC and CEO, respectively. The film surface morphology was evaluated using atomic force miscrocope images, and thermogravimetric analysis (TGA) was performed to study the thermal stability of the films. The displacement and tensile strength were significantly lower (p?<?0.05) at higher concentrations of CEO, this variable being the only one with a significant effect. The chemical composition of the films was confirmed utilizing Fourier transform infrared (FTIR) spectroscopy. The proportion of CEO added to the films had a significant influence on antimicrobial activity, inhibiting the growth of both Escherichia coli and Staphylococcus aureus.  相似文献   

15.
Fruits have been the focus of several studies aimed at finding new antioxidant sources for protection against the damage caused by reactive species. In this study, the antioxidant activity and the presence of phenolic compounds in all parts (peel, pulp, and seeds) of Eugenia involucrata DC. fruits were evaluated. DPPH·, ABTS·+, and ORAC methods were used to determine the antioxidant activity, and an UHPLC-MS/MS method was developed for determining the phenolic compounds (gallic, chlorogenic, ferulic, p-coumaric and ellagic acids, quercetin, and myricetin). In the determination of both antioxidant activity and phenolic composition, the efficiency of solvents with different polarities—methanol/H2O (80:20, v/v), ethanol/H2O (80:20, v/v), methanol/acidified water with phosphoric acid pH 3.00 (80:20, v/v), and ethyl acetate—for the extraction of the phenolic compounds, was also evaluated. All parts of E. involucrata fruits showed antioxidant activity, in the range of 36.68 ± 1.44 to 873.87 ± 18.24 μmol TE g?1, being the highest values found in the seeds and peel when more polar extraction solvents were used. Six, five, and three phenolic compounds were identified and quantified in the pulp, peel, and seeds, respectively, with the highest abundance as p-coumaric acid (14 ± 2 mg kg?1) in the pulp, quercetin (47 ± 5 mg kg?1) in the peel, and gallic acid (74 ± 4 mg kg?1) in the seeds, also when more polar solvents were used. Although antioxidant activity methods suggested that the peel and seeds have more antioxidant potential, a wider variety of compounds were determined in the pulp.  相似文献   

16.
Lettuce is often involved in foodborne outbreaks caused by pathogenic Escherichia coli. Current control strategies have often proved ineffective to ensure safe food production. For that reason, the present study compared the efficacy of tannin extracts and chlorine treatments on the reduction of E. coli ATCC 25922 adhered to lettuce leaves. E. coli was inoculated artificially on leaf surfaces of fresh crisp lettuce. Effectiveness of water, chlorine (200 mg/L), and three commercial available tannin extracts from Acacia mearnsii De Wild. (tannin AQ (2 %, w/v), tannin SG (1 %, v/v) and tannin SM (1 %, v/v)) treatments was evaluated using the viable plate count method and scanning electron microscopy (SEM). SEM results revealed that bacterial cells are attached as individual cells and in clusters to the leaf surface after 2 h of incubation. Biofilm formation was observed after 24 h of incubation. The tannin SM treatment was able to reduce counts in approximately 2 log CFU/cm2 on leaf segments. However, treatment was less effective in the reduction of E. coli counts after 24 h of incubation when compared to 2 h incubation of the same extract. The results suggest that the tannin SM extract diminishes E. coli counts adhered to and under biofilm formation on lettuce leaves and its effect is similar to the use of chlorine solutions.  相似文献   

17.
This study aimed to understand the micromechanism of thermosonic pretreatment and microwave vacuum drying on Agaricus bisporus. The water state and glass transition temperature (T g ) of fresh and thermosonically treated Agaricus bisporus slices during microwave vacuum drying were studied using differential scanning calorimetry (DSC), low-field nuclear magnetic resonance (LF-NMR), and magnetic resonance imaging (MRI). Results showed that four population groups were contained in the initial distribution of transverse relaxation time (T 2) data of fresh A. bisporus slices: T 21 (0.38–7.05 ms), T 22 (9.33–32.75 ms), T 231 (37.65–265.61 ms), and T 232 (305.39–811.13 ms). Thermosonic pretreatment significantly decreased the initial free water content of A. bisporus sample but was accompanied by a sharp increase in its immobilized water. “Semi-bound water transfer” appeared during microwave vacuum drying (MVD) at moisture contents (X w ) of 0.70 and 0.60 g/g (wet basis (w.b.)) for untreated and thermosonically treated samples, respectively. MVD caused dramatic changes in the water state and enhanced the T g by decreasing the content and mobility of immobilized water in A. bisporus tissues. The mobility of semi-bound water for thermosonically and MVD-treated samples was higher than for MVD-untreated samples, resulting in T g values decreasing by approximately 2–11.5 °C, but the uniformity of water distribution in thermosonic-treated and MVD-treated samples was better at X w  ≤ 0.52 g/g (w.b.).  相似文献   

18.
Bael (Aegle marmelos) is considered as a holy fruit comprised of vast number of phytonutrients. Whole bael tree including all its parts has medicinal significance. Lack of awareness and seasonal nature makes its processing rather challenging. Conventional heat processing may lead to inactivation of quality hampering enzymes such as peroxidase, but at the cost of loss in essential phytonutrients. In the present work it was observed that thermal inactivation of bael peroxidase obeyed first order kinetics with enzyme activation energy of 7.7 kJ mol?1. Complete inactivation of bael peroxidase was achieved within 11 min at 85?°C while ultrasound treatment attained in lesser time of 4 min at 64.07 W cm?2 ultrasonic intensity. Loss of marmelosin a well-known phytonutrient in bael fruit was found to be 83.29?% by heat (11 min, 85?°C) and only 50.20?% by ultrasonication (4 min, 64.07 W cm?2 ultrasonic intensity). Ultrasonication has potential to overcome harmful effects of heat processing with retention of phyto-constituents and hence has promising future in various food processing applications.  相似文献   

19.
Shigella spp. are enteric pathogens that pose a serious threat to public health worldwide. A novel saltatory rolling circle amplification (SRCA) assay was developed to detect Shigella spp. in food targeting the ipaH gene. SRCA as an isothermal amplification method requires no expensive thermocycle instrument and could avoid electrophoresis as visualization results was successfully applied for SRCA. In order to confirm the specificity of this assay, 34 strains including 11 strains belonging to different Shigella species and 23 non-Shigella bacteria were detected with pure cultures. The sensitivity of Shigella flexneri by SRCA was evaluated using agarose gel electrophoresis, which was 7.3 × 101 fg/μL. In addition, the amplification results were also determined by adding the fluorochrome, SYBR Green I (1 μL of 1000×), allowing naked eye visualization of results, and the sensitivity was 7.3 × 100 fg/μL. Moreover, the sensitivity of PCR was 7.3 × 102 fg/μL, showing that the sensitivity of SRCA by electrophoresis and SYBR Green I fluorescence were 10- and 100-fold higher than that of PCR, respectively. The detection limit of SRCA was also evaluated with artificially inoculated vegetable salad without enrichment, and it was 4.7 × 102 and 4.7 × 101 CFU/g by electrophoresis and fluorescence, respectively. The detection limit by PCR was 4.7 × 103 CFU/g, which was 10- and 100-fold higher than that of SRCA. Therefore, SRCA is a potentially reliable tool for rapid and specific detection of Shigella in food and could be useful in underdeveloped countries with limited resources.  相似文献   

20.
This paper assesses the actual reliability of four rheological parameters to help describe honeys that exhibit non-Newtonian behavior, being the most representative of which, ling heather (Calluna vulgaris (L.) Hull) honeys. Sampling included a representative number of unifloral ling heather honeys, non-unifloral honeys close to ling heather uniflorality, and other non-unifloral honeys containing ling heather. All experiments were performed at 25 °C and consisted on researching viscosity curves at different shear rates, as well as the time dependency of honey samples at a constant shear rate. Viscosity curves were correctly fitted by the Ostwald-de Waele model. Consistency coefficients (k) and flow behavior indexes (n) were calculated, and the Weltmann model was used to determine the stress decay behavior. The influence of honey moisture on k value was also researched. Hysteresis area and time-dependent thixotropic index B proved to be the most suitable parameters for a reliable ling heather honey authentication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号