首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of power ultrasound and pulsed vacuum (PV) treatments on the dehydration kinetics and the status of water during osmotic dehydration of strawberries was investigated. Low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) were used to determine the spatial distribution and status of water within the cellular and intercellular spaces. Differential scanning calorimetry (DSC) was used to determine the freezing point depression and the amount of frozen water. Osmotic treatment was performed by immersing the samples in 25 and 50 % (w/w) sucrose solutions at 40 °C for 3 h. Water loss and solid gain of strawberry samples were measured and the data were fitted by Peleg’s model. The Peleg’s model fitted the experimental water loss and solid gain kinetics data well (R 2?>?0.98). At a given sucrose concentration, the highest water loss and the highest decrease in firmness occurred while using ultrasound treatment, while the highest solid gain and the highest firmness values were achieved by pulsed vacuum treatment. LF-NMR signals were able to quantify the effect of water-osmotic solute exchange on the cell compartments (vacuole, cytoplasm plus intercellular space, and cell wall). The LF-NMR data showed that the relative space occupied by the vacuole decreased and the relative space occupied by the cytoplasm and intercellular space were increased due to these osmotic treatments. MRI results indicated that a bright “water strip” appeared in the periphery of all the osmotically dehydrated samples. DSC results showed that the decrease in water content and the increase in the osmotic solutes depressed the initial freezing point and the freezable water content in osmotically dehydrated strawberry.  相似文献   

2.
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.  相似文献   

3.
超声波强化紫薯渗透脱水工艺   总被引:1,自引:0,他引:1  
李俊先  张莹  董全 《食品科学》2012,33(14):73-77
分别以蔗糖质量分数、渗透温度、渗透时间和超声波功率为单因素,研究其对紫薯超声波渗透脱水的脱水率和固形物增加率的影响。以各因素为自变量,以脱水率和固形物增加率为因变量,对紫薯渗透脱水进行响应面工艺研究,得出最优工艺参数。结果表明:影响脱水率和固形物增加率的主次顺序均为渗透时间>渗透温度>糖液质量分数>超声波功率;响应面优化最优工艺参数为糖液质量分数56.29%、渗透液温度65℃、渗透时间2.46h、超声波功率142.33W。结合实际操作,响应面优化的最优工艺调整为糖液质量分数56%、渗透液温度65℃、渗透时间2.5h、超声波功率140W,经验证,此条件下脱水率为40.79%,固形物增加率为8.33%。  相似文献   

4.
BACKGROUND: Drying is a traditional way of fruit preservation. Because of the high energy costs associated with air‐drying, osmotic dehydration is often applied as a pretreatment to reduce air‐drying time. Ultrasound is an emerging technology with several applications in food processing. The effect of ultrasound on fruit tissue depends on the tissue structure and composition, and ultrasound might be beneficial to improve air‐drying efficiency, with consequent reduction in process costs. In this study the effect of ultrasound and ultrasound‐assisted osmotic dehydration on sapota tissue structure was evaluated. RESULTS: Ultrasound induced cell disruption and breakdown of cells with high phenolic content (dense cells) and also induced elongation of parenchyma cells. Ultrasound application combined with high osmotic gradient enhanced water loss and solid gain because of the formation of microscopic channels. Ultrasound‐assisted osmotic dehydration induced gradual distortion of the shape of cells, cell breakdown and formation of microscopic channels. Micrographs of the fruit tissue showed that ultrasound preferentially affected dense cells. CONCLUSION: Ultrasonic pretreatment was able to preserve the tissue structure of the fruit when distilled water was used as liquid medium. The application of ultrasound‐assisted osmotic dehydration resulted in severe changes in the tissue structure of the fruit, with consequent increase in the effective water diffusivity, because of the formation of microscopic channels and cell rupture. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Mass transfer of kaffir lime peel during osmotic dehydration was investigated in this paper. Processing factors were solute concentrations, process temperatures, and immersion time. The results showed that increasing solute concentration and process temperature resulted in a higher reduction in moisture contents of kaffir lime peel and increase in water loss and solid gain rates. Analysis of variance showed significant effects (P < 0.05) of all processing factors except process temperatures for water loss. Multilayer feedforward neural network (MFNN) was proposed to predict percentages of water loss and solid gain of kaffir lime peel during osmotic dehydration based on three processing factors as inputs. The best network with the lowest average mean squared error (MSE) of 0.0066 and the highest average regression coefficient (r2) of 0.9725 from normalized training and validating data sets was composed of one hidden layer with five hidden neurons and used Levenberg–Marquardt algorithm as a training algorithm. A simulation test showed good generalization of the successfully trained MFNN model with the average MSE of 6.5813 and 5.9340, and average r2 of 0.9745 and 0.9632, respectively, for water loss and solid gain. Compared with multiple linear regression models, MFNN was found to be more suitable for predicting water loss and solid gain during the OD process of kaffir lime peel.  相似文献   

6.
Osmotic treatment (OT) was applied to infuse grape phenolic compounds into plant tissue. The stability of the grape phenolics after a post-treatment, such as convective air drying, was evaluated. A model food made of agar gel and three plant commodities (two fruits, apple and banana, and one vegetable, potato) were osmo-treated and subsequently air-dried (55 °C). In the osmotic solution, sodium chloride (10%, w/w) and sucrose (50%, w/w) were used when treating vegetables and fruits, respectively, while a commercial grape seed extract was the source of phenolics (0.63%, w/w). During OT, total phenolic content and antiradical scavenging capacity of plant foods were significantly increased. The extent of grape phenolic impregnation was controlled by food structure and the kind of osmo-active solute: plant tissue showed a lower grape phenolic infusion than that of the model food. OT, as a pre-treatment, protected against grape phenolic degradation during further convective air drying, even though the mechanisms controlling the phenolic degradation process require further research.  相似文献   

7.
In this study, the effect of ultrasonic pre-treatment on osmotic dehydration of kiwi slices was investigated. Kiwi fruit slices were subjected to ultrasonic pre-treatment in a sonication water bath at a frequency of 25 kHz for 20 min. Osmotic dehydration of ultrasonic pre-treated samples were conducted for a period of 300 min in 60 Brix sucrose solution. The kinetics of moisture loss and solute gain during osmotic dehydration were predicted by fitting the experimental data with Azuara's model and Weibull's model. The effects of ultrasound application on water loss, sugar gain, effective moisture diffusivity and solute diffusivity of the samples were analysed. The osmotic dehydration process showed a rapid initial water loss followed by a progressive decrease in the rates in the later stages. From the Azuara's model, the predicted equilibrium water loss value for ultrasound pre-treated sample was 58.4% (wb) at 60°C that was nearly 16% higher than the samples treated under atmospheric conditions. Fitting of Weibull model showed that the ultrasound pre-treated and untreated samples had shape parameter (βw) ranging between 0.570–0.616 and 0.677–0.723 respectively. The lower values of shape parameter indicated that sonication caused accelerated water loss resulting faster dehydration rate. Results indicated that the effective moisture diffusivity and solute diffusivity was enhanced in ultrasonic pre-treated samples. The effective moisture diffusivity during osmotic dehydration of ultrasonic pre-treated samples was ranged between 5.460×10−10–7.300×10−10 m2/s and solute diffusivity was varied between 2.925×10−10–3.511×10−10 m2/s within the temperature range 25–60 °C. The enhanced moisture and solute diffusivity in ultrasound pre-treated kiwi slices was due to cell disruption and formation of microscopic channels.  相似文献   

8.
雪莲果超声波辅助渗透脱水工艺参数的优化   总被引:2,自引:0,他引:2  
石启龙  赵亚  郑亚琴 《食品科学》2011,32(14):124-129
以渗透脱水温度、时间、蔗糖质量分数、超声波功率和处理时间为因素,以失水率(water loss,WL)和固形物增加率(sugar gain,SG)为指标,通过单因素试验,研究雪莲果的渗透脱水工艺参数。以渗透脱水温度、时间、蔗糖质量分数、超声波处理时间为因素,以WL、SG和二者比值(WL/SG)为指标,通过二次回归正交旋转组合试验设计建立雪莲果超声波辅助渗透脱水过程中各响应值(WL、SG和WL/SG)与各因素之间的回归方程,并得到超声波辅助渗透脱水的最优工艺参数。结果表明,超声波辅助处理可显著提高雪莲果渗透脱水效果;影响WL的因素主次顺序是温度>时间>蔗糖质量分数>超声波处理时间;影响SG的因素主次顺序依次是渗透脱水时间>超声波处理时间>温度>蔗糖质量分数;影响SG/WL的因素主次顺序是渗透脱水时间>蔗糖质量分数>超声波处理时间>温度。雪莲果超声波辅助渗透脱水的最佳工艺参数为渗透脱水温度41℃、时间1.7h、蔗糖质量分数60.18%、超声波处理时间35min。在此组合参数条件下,SG/WL平均值为0.059。  相似文献   

9.
The elephant foot yam slices were processed with combined pulsed-microwave-vacuum osmotic drying. Osmotic dehydration at ambient (28 °C and 45% RH) was carried out using different levels of sucrose concentration (30, 40, 50 and 60% w/w), salt concentration (5, 7.5, 10 and 12.5% w/w) and dehydration time (10, 20, 30, 50, 70, 90 and 120 min). During the osmotic dehydration, pulsed microwave vacuum (15 kPa pressure, 1 W/g power density and 1.853 pulsating ratio) was maintained for 2 min over the sample and solution to enhance the mass transfer. For this purpose, the osmotic dehydration experiments were conducted in the microwave-vacuum cavity. Azuara model predicted the moisture loss and solid gain by elephant foot yam slices during osmosis. It was observed that both the moisture loss and the solid gain increased with increasing concentration of the osmotic solution. The optimum conditions found in the process were 40% w/w sucrose concentration, 6% w/w salt concentration and 70 min osmotic dehydration time, resulting in to 42.80% moisture loss (initial weight) and 14.65% solid gain (initial weight). Further, samples were dried using microwave vacuum dryer up to moisture content of 5–6% d.b. by varying microwave power density (2, 4, 6 and 8 W/g) and pulsating ratio (1.312, 1.625, 1.983 and 2.250). Page model was fitted to the data to study the microwave vacuum drying kinetics. The microwave vacuum drying at 1.625 pulsating ratio with microwave power density 4 W/g yielded a product with the highest overall acceptability score. Guggenheim, Anderson and deBoer (GAB) model was used in the study of the sorption behavior of dehydrated elephant foot yam and shelf life prediction.Industrial relevanceThe production of elephant foot yam in India and South East Asia is comparatively higher than other vegetables. Although, it is nutritious product and good source of energy, food industries are not interested to process elephant foot yam using a time consuming traditional osmotic dehydration process followed by hot air drying. Therefore, present research work was undertaken from industry suggestion to develop accelerated osmotic dehydration process for elephant foot yam using novel pulsed-microwave-vacuum combination followed by finish drying by microwave-vacuum. This research has been carried out to decrease industrial processing time, energy consumption and improving quality of the product. Industry will start adopting this new hybrid process of drying elephant foot yam on large scale.  相似文献   

10.
Osmotic dehydration of pomegranate seeds was carried out at different temperatures (30, 40, 50 °C) in a 55°Brix solution of sucrose, glucose, and mixture sucrose & glucose (50:50, w/w). The most significant changes of water loss and solids gain took place during the first 20 min of dewatering. During this period, seeds water loss was estimated to 46% in sucrose, 37% in glucose and 41% in mix glucose/sucrose solution. The increase of temperature favoured the increase of water loss, weight reduction, solids gain and effective diffusivity. Differential scanning calorimetry data provided complementary information on the mobility changes of water and solute in osmodehydrated pomegranate seeds. The ratio between % frozen water and % unfreezable water decreased from 5 to 0.5 during the process. That involving the presence of very tightly bound water to the sample, which is very difficult to eliminate with this process. It also appeared that glass transition temperature depends on the types of sugar.  相似文献   

11.
研究了不同渗透溶液对辣椒果肉的脱水效果,从失水率、固形物增加率、含盐量和色泽变化等方面综合分析了不同浓度的纯糖溶液(50%和65%)、纯盐溶液(10%和20%)和糖盐混合溶液(10%盐,50%糖)的作用效果。结果表明,蔗糖和盐混合溶液的脱水效果最好,8h的失水率可以达到54.20%,可溶性固形物增加率仅有7.53%,且含盐量更是低于纯盐溶液的含盐量变化,只增加了2.62g/100g干基。在渗透后的颜色方面,混合溶液渗透后的变化差异没有纯溶液渗透后的明显。  相似文献   

12.
真空、脉冲真空、超声波对芒果渗透脱水的影响   总被引:1,自引:0,他引:1  
为研究真空、脉冲真空和超声波对芒果渗透脱水动力学的影响,将大小为26mm×26mm×5mm的块状样品浸于65°Brix果葡糖浆溶液中,渗透脱水处理180min。结果表明,菲克扩散模型能很好地描述渗透脱水过程中芒果失水率和固增率的变化规律;真空、脉冲真空和超声波均促进了水分和固形物的扩散,其中超声波作用使水分扩散系数具有最大值,而真空处理导致了固形物扩散系数最高。  相似文献   

13.
A pilot-scale belt type osmotic contactor was designed and installed in a continuous osmotic dehydration process to obtain maximum water removal from fruits and vegetables with a minimum contact time. The carrot was chosen as a representative vegetable and a ternary mixture of sucrose/sodium chloride/water with total solids concentration of about 50 to 55% was chosen for the osmotic solution. The experimental results showed that the optimum condition was found to require a 44% sucrose/7% sodium chloride aqueous solution with 16 min of contact time which gave a water loss of 26% and a highest ratio of water loss over solids gain (about 9) among different treatments. It is concluded that the continuous type of contactor can have potential applications in the food industry.  相似文献   

14.
The study of the equilibrium is needed not only for modeling of the osmotic process as a unit operation but also for a better understanding of the mass transfer mechanisms involved in this kind of systems. A true equilibrium state usually takes very long time to achieve; therefore, a pseudo-equilibrium state is often employed. Experimental pseudo-equilibrium states for water loss and solid gain during the osmotic dehydration of apple slices (5?×?50?×?50?mm3) at different osmotic syrup concentrations (30%, 40%, 50%, and 60% (w/w) of sucrose) were evaluated. Four empirical mathematical methods (Slopes, Azuara, Zugarramurdi and Lupín, and Equal concentration) were used in order to calculate the pseudo-equilibrium values obtained and then to compare them against to the experimental ones. Additionally, the effective diffusion coefficients for water and sucrose were calculated by using those pseudo-equilibrium values. Experimental pseudo-equilibrium values increased with concentration of the osmotic syrup, ranged between 24% and 56% for water loss and 11% and 28% for solid gain; the predicted pseudo-equilibrium values followed the same trend. The decreasing order of accuracy for pseudo-equilibrium values and effective diffusion coefficients, among the methodologies evaluated, was Equal concentration method > Azuara method > Slopes method > Zugarramurdi and Lupín method. Although the Equal concentration method has no theoretical accuracy, it is independent of the kinetic data presenting a higher advantage over the other three mathematical methods evaluated.  相似文献   

15.
The influence of vacuum time and solution concentration on mass transfer and mechanical properties of osmodehydrated melon cubes has been studied. Pulsed vacuum osmotic dehydration (PVOD) was carried out at 30 °C for 4 h, using sucrose solutions (40, 50 or 60°Brix) and applying a vacuum pulse (100 mbar for 5, 10 or 15 min). Kinetics of water loss, solid gain and stress at rupture were analysed, as well as effective diffusivities using the hydrodynamic model. The increase in solution concentration favoured water removal, but no significant effect of vacuum time was observed. The use of less concentrated solutions coupled to the action of vacuum pulse resulted in greater solid uptake. Samples subjected to PVOD using 60°Brix sucrose solution presented greater water loss, lower sugar uptake and better maintenance of fresh fruit texture throughout the process. Diffusion coefficients estimated by the hydrodynamic model showed a good fit to the experimental data.  相似文献   

16.
The effects of ultrasound pretreatments on mass transfer kinetics, microstructure, carotenoid and vitamin C contents of sweet potato were investigated. Sweet potato samples were treated in distilled water with ultrasound (DWU), osmotic dehydration without ultrasound (OD) and ultrasound-assisted osmotic dehydration (UOD). Samples were subjected to ultrasound probe of 2 cm diameter, frequency of 28 kHz at 300 W maximum power at different pretreatment times of 20, 30, 45 and 60 min. The Azuara model used in this study fitted the experimental data well with high coefficient of correlation ranging from 0.92 to 0.98, low values of chi-square (<0.6), root mean square error (<0.9) and percent mean relative deviation (<10%). The results showed that UOD significantly (p < 0.05) had the highest mass transfer coefficient and equilibrium value for water loss and solid gain, compared to DWU and OD. DWU had no significant effect on the structure of sweet potato samples, while UOD had the highest effect on the structure. The samples treated in OD had the highest carotenoid retention compared to DWU and UOD at all pretreatment times. However, ultrasound enhanced the retention of vitamin C (>70%) in sweet potato samples treated in DWU and UOD.  相似文献   

17.
The objective of this research was to study the effect of osmotic pretreatment with different sugars on the quality of frozen rambutan. Rambutan pieces were osmotically dehydrated in 50% sucrose, trehalose and maltitol solutions. The amount of water loss and solid gain during osmotic dehydration were determined. The increase of water loss and solid gain were not significantly different among the syrups ( P  > 0.05). For osmodehydrofreezing, the fruit pieces were immersed for 1 h before freezing at −40 °C with an untreated sample used for comparison. The physical and chemical properties of samples stored at −18 °C for 3, 60 and 120 days were studied. Pretreatment with sucrose received the highest scores in terms of taste, texture and acceptability. The glass transition temperature values of treated samples, especially those treated with trehalose, increased significantly compared to the untreated sample, but they were all much lower than the storage temperature of −18 °C. All of the experimental samples were in a rubbery state, and therefore the glass transition concept could not be used to predict quality.  相似文献   

18.
Water loss (WL), solid gain (SG), weight reduction (WR) and shrinkage were quantitatively investigated during osmotic dehydration of plum using response surface methodology with the sucrose concentration (30–60g/100 g sample), temperature of sucrose solution (40–60°C) and immersion time (60–240 min). Experiments were designed according to Central Composite Rotatable Design with these three factors. For each response, second order polynomial models were developed using multiple linear regression analysis. With respect to water loss, solid gain, weight reduction and shrinkage, both linear and quadratic effects of four variables were found to be significant. In most cases, an increase of sucrose concentration, temperature and immersion time increased WL, SG, WR and shrinkage, except the increasing of immersion time for osmotic treatment has no effect on shrinkage. It was found that immersion time and temperature were the most significant factors affecting the WL during osmotic dehydration of plum followed by concentration of sucrose solution. This was also true for WR. Effect of temperature and time were more pronounced for SG than the concentration of sucrose solution.  相似文献   

19.
Pomegranate seeds were osmodehydrated using date juice added with sucrose (final °Brix, 55) as immersion solution. The kinetics of osmotic dehydration showed that the most significant changes of mass transfer took place during the first 20 min of the process, regardless of date juice varieties. During this time, seed water loss and solid gain were estimated to be ∼39% and ∼6%, respectively. After 20 min of the process, the percentage of water loss and solid gain varied slightly and ranged on average close to ∼40% and ∼9%, respectively. During osmotic dehydration, there was a leaching of natural solutes from seeds into the solution, which is quantitatively not negligible, and might have an important impact on the sensorial and nutritional value of seeds and date juices. Both scanning electron microscopy and texture (compression) analysis revealed that osmotic dehydration process induced modifications of seed texture and cell structure. Sucrose was found to be the essential element which influences the texture of seed and the viscosity of date juice. Additionally, natural sugar present in date juice permits substituting 35% of the total quantity of sucrose added to the osmotic solution.  相似文献   

20.
为系统地了解不同小分子糖特别是低聚糖和糖醇对草莓的渗透行为以及不同小分子糖对真空冷冻干燥草莓品质的影响,本研究利用两种数学模型对10 种常见小分子糖(白利度为40 °Brix)的渗透动力学进行拟合,并进一步对渗糖处理后真空冷冻干燥草莓的理化特性进行表征。结果表明,Weibull模型更适用于描述渗糖处理后草莓的可溶性固形物增量(solid gain,SG),而Peleg模型可以更好地描述草莓的水分去除量(water loss,WL)。经不同糖渗透处理结束后,草莓的SG差异较大,山梨糖醇可以使草莓的SG达到6.84 g/100 g,是低聚异麦芽糖的6.16 倍。此外,渗糖处理的草莓硬度得到普遍提高(94.58%~223.23%);葡萄糖、果糖、山梨糖醇渗透处理组的脆度分别降低了16.70%、20.74%、41.45%,低聚果糖渗透处理后的草莓质构特性与蔗糖最为接近。综合考虑渗透效率、感官营养品质和生产成本,低聚果糖是蔗糖在果蔬渗透处理方面的一种潜在替代品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号