首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of three sets of start-up solvents and one set of partially process-derived recycle solvents was studied in small autoclave coal hydrogenation tests. The start-up solvents were obtained by catalytically hydrotreating anthracene oils or creosote oils. It is shown that this preparation procedure converts polynuclear aromatics and two-ring aromatics to hydroaromatics and, ultimately, to alicyclics. Coal conversions using start-up solvents are found to reach a maximum at intermediate degrees of solvent hydrogenation which is believed to correspond to a maximal abundance of hydroaromatic solvent hydrogen donors. A solvent hydrogen donor index (SHDI), simply derived from 1H n.m.r. spectral data, was devised and is found to successfully correlate coal conversions obtained using different start-up solvents, especially where N2 gas rather than H2 gas is employed in the autoclave tests. A set of partially process-derived recycle solvents were produced in multiple cycle continuous coal hydrogenation experiments. These were tested under relatively severe hydrogenation conditions in the presence of hydrogen gas, using the small autoclave unit. Substantial donation of solvent hydrogen was found to occur and coal conversions to hexane — and toluene-soluble products are found to be a smooth function of the solvent hydrogen donor index. It is concluded that the hydrogen donor capacity of a solvent is a major factor governing coal conversion, especially when the demand for solvent hydrogen is high. The SHDI parameter is useful in rationalizing the behaviour of start-up solvents. Also, at least in the first few cycles of a continuous two stage coal hydrogenation process, the SHDI parameter allows solvent quality to be monitored, and consequently optimized.  相似文献   

2.
A comparison of anthracene and phenanthrene as solvents was undertaken by liquefying either Wyodak or Kentucky 9/14 coal in the presence of hydrogen or nitrogen. Phenanthrene was found to be a better physical solvent than anthracene for liquefying both coals. Anthracene and its derivatives are better hydrogen-shuttling solvents than phenanthrene and its derivatives. Hydrogenation of anthracene to tetrahydro-anthracene was observed with both coals. Dihydroanthracene is a better hydrogen-shuttling solvent than dihydrophenanthrane in the liquefaction of Kentucky 9/14 coal. Anthracene is a better solvent than phenanthrene in the presence of 1-methylnaphthalene in liquefying both Wyodak coal under hydrogen and Kentucky 9/14 coal under nitrogen. The minerals in Kentucky 9/14 coal appear to be better hydrogenation catalysts than those in Wyodak coal. Labile hydrogen from coal appears to escape readily before reacting with hydrogen-shuttling solvents under the atmospheric environment.  相似文献   

3.
Molecular dynamic simulations were used to examine the initial stages of solvent-coal interactions during solvent swelling. Large-scale (> 10,000 atoms) vitrinite-rich Waterberg and inertinite-rich Highveld coal models used in this study were previously constructed. Isothermal-isobaric molecular dynamics simulated the experimental conditions used for the solvent swelling of these coals. Partially solvent swollen structures were constructed by the addition of solvent molecules to the original coal molecules using an amorphous building approach. The various solvated coal models were simulated using pyridine, N-methylpyrrolidone (NMP) and CS2/NMP solvents. The changes in bonding and nonbonding energies due to solvent swelling were determined by comparing original coal models to corresponding swollen models. Simulation studies showed that coal-coal nonbonding interactions changed due to disruption of the van der Waals interaction energies. The distributions of hydrogen bonds were calculated and provided a method to evaluate solvent-coal hydrogen interactions. It was found that hydroxyl groups associated with the bituminous coal structure are the dominating hydrogen bond donor in solvent interaction. Therefore, the contributions of nonbonding interactions in coal play an important role during coal-solvent swelling. Molecular modeling and simulation is a useful tool to probe these changes in energies and nonbonding interactions in coal with various solvents.  相似文献   

4.
Taiheiyo coal was hydrogenated in phenanthrene, 9,10-dihydrophenanthrene, 1,2,3,4,5,6,7,8-octahydrophenanthrene and perhydrophenanthrene under 10 MPa (initial pressure) of hydrogen or nitrogen with or without stabilized nickel as catalyst at 400 °C for 15 min. Preasphaltene, asphaltene and oil conversions and the conversion of solvents were measured, and the amounts of hydrogen absorbed by coal from molecular hydrogen and from donor solvent were calculated. The main route of reaction appears to be the direct hydrogenation of coal by molecular hydrogen and the contribution of hydrogenation via the solvent was greater than in the case of the two rings solvent system.  相似文献   

5.
Taiheiyo coal was hydrogenated in naphthalene, tetralin and decalin under 10 MPa (initial pressure) of hydrogen or nitrogen with stabilized nickel as catalyst at 400 °C for 15 min. Preasphaltene, asphaltene and oil conversions and the conversion of the solvents were measured. The hydrogen absorbed by coal from molecular hydrogen and from the donor solvent was calculated. The main reaction route appears to be the direct hydrogenation of coal by molecular hydrogen, with the side reaction via solvent by molecular hydrogen occurring only slightly, when an active catalyst such as stabilized nickel is present.  相似文献   

6.
煤制油工艺等煤炭清洁高效转化技术是能源化工领域的研究热点,溶解性好、提供/传递氢能力强且热稳定性高,其溶剂选择、使用是影响煤制油工艺经济运行的关键。本文以煤液化溶剂作用为基础,通过对液化自身产物、废塑料及FCC油浆等煤直接液化溶剂的组成、性质及作用效果的综合评述,指出煤、溶剂、氢气间的混合并非理想混合,与煤H/C适宜、极性相近的溶剂在共处理过程表现出良好的协同作用,液化过程的转化率、轻质产物选择性明显提高。分析表明,协同作用的大小取决于煤、溶剂的组成、性质匹配。煤-重质烃共处理工艺利用富芳烃油浆溶解性好、提供/传递氢能力强的特点强化了煤热解加氢反应的进行,同时煤加氢液化产生的多孔残煤具有吸附性强的特点,有助于重质烃改质,使共处理转化率显著提高、轻质产物选择性增大。最后指出,煤-重质烃共处理的协同作用为改善煤、中质/重质芳烃的综合利用提供了可能。  相似文献   

7.
Hydrogen-donor solvents such as hydrophenanthrene are the most effective aromatic solvents for the liquefaction of brown coal. The hydrogen-donating ability of the solvent is more important for brown coals than for bituminous coals, because the thermal decomposition and subsequent recombination of the structure of the brown coals occurs rapidly. Three-ring aromatic hydrocarbons are more effective solvents than two-ring aromatics, and polar compounds are less effective solvents with brown coals than with bituminous coals. The thermal treatment of brown coal, accompanied by carbon dioxide evolution at temperatures > 300°C, in the presence of hydrogen-donating solvent did not affect the subsequent liquefaction reaction. However, thermal treatment in the absence of solvent strongly suppressed the liquefaction reaction, suggesting that the carbonization reaction occurred after the decarboxylation reaction in the absence of hydrogen donor. To study the effect of various iron compounds, brown coal and its THF-soluble fraction were hydrogenated at 450°C in the presence of ferrocene or iron oxide. The conversion of coal and the yield of degradation products are increased by the addition of the iron compounds, particularly ferrocene, and the yield of carbonaceous materials is decreased.  相似文献   

8.
Yoshio Kamiya  Shinichi Nagae 《Fuel》1985,64(9):1242-1245
Hydrogen transfer from donor solvent to coal must involve reactions such as hydrogen donation to free radicals and hydrogenation of aromatic structures. The relative reactivities of five typical hydrogen donor solvents, more reactive than tetralin, were determined using a competing elimination reaction in the liquefaction of a bituminous coal at 400 °C and a brown coal at 350 °C. 9,10-Dihydroanthracene, 9,10-dihydrophenanthrene and 1,2,3,4-tetrahydroquinoline exhibited outstanding hydrogen donating ability. Further, the relative reactivities of five mild hydrogen donor solvents such as acenaphthene and indan were determined by a similar elimination reaction using a bituminous coal at 450 °C.  相似文献   

9.
《Fuel》1986,65(7):899-902
Petroleum heavy oil and anthracene oil were used as hydrogen donor solvents in a coal liquefaction test. A positive synergistic effect was obtained when mixed (petroleum heavy oil; anthracene oil) solvent was employed. The temperature of maximum conversion was also lower for this mixed solvent than for any of the solvents alone. It is shown from the 1 H n.m.r. spectral data that petroleum heavy oil acts as a hydrogen donor to anthracene oil resulting in hydroaromatic derivatives. These hydroaromatic species donate hydrogen to the coal fragments. The 1 H n.m.r. spectral data allow monitoring of the temperature at which the petroleum heavy oils have maximum donor capacity and consequently the temperature for coal liquefaction in this process.  相似文献   

10.
The dissolvabilities of coal preasphaltenes in several solvents with various solvent parameters were correlated. Generally dissolvability increased with increasing net hydrogen-bonding index, increasing donor number (DN) and increasing value of donor number minus acceptor number (AN) of the solvent. However, these trends show significant scatter and are not satisfactory as predictors of individual solvent behaviour. Plots of preasphaltene dissolvability against Hildebrand solubility parameter produce curves with broad maxima and several off-line points. Best results are obtained with DN/AN ratios, which yield smooth curves with narrow maxima and little scatter. These ratios are also shown to be useful predictors of the effectiveness of solvents for the extraction and swelling of coal.  相似文献   

11.
An investigation of the effect of a hydrogen-donor component in the solvent used for supercritical gas extraction was undertaken. Extraction of three Australian coals with toluene, with decalin and with these solvents containing small amounts of tetralin was investigated. There was a significant improvement in conversion by addition of 5% tetralin to the solvent. Other hydrogen donors were also effective. The improvement in conversion was shown to be due to hydrogen donation rather than to a change in the physical properties of the solvent. The increase in conversion was greater for a brown coal than for a bituminous coal of the same hydrogen to carbon atomic ratio. The pre-asphaltene content of the extract increased with conversion.  相似文献   

12.
Solvolytic liquefaction of coals of different rank was studied with a variety of solvents at 370–390 °C under nitrogen in order to elucidate the role of solvent in coal liquefaction of this kind and to find a suitable solvent for the highest yields of liquefaction. The yield was found to depend strongly upon the nature of the coal as well as the solvent under these conditions. Pyrene and a SRC-BS pitch were excellent solvents for Miike coal, which was fusible with high fluidity at these temperatures. However, the former was less efficient for Itmann and Taiheiyō coals which were fusible at a higher temperature and non-fusible, respectively. The mechanism of solvolytic liquefaction is discussed, including nature of coal and solvent at reaction temperatures, in order to understand the properties required for high yields with non-fusible coals in solvolytic liquefaction. It is found that for liquefaction with a high yield if the coal is non-fusible, solvolytic reaction should take place between solvent and coal, so giving a liquid phase of low viscosity at the reaction temperature. The solvolytic reaction may be one of hydrogen transfer when SRC-BS is used as the solvent.  相似文献   

13.
Coal solvent extraction is a clean coal technology that involves the extraction of organic matter from coal using solvents. In this study, the effects of various coal and solvent properties on extraction yield were studied and their correlations were observed. Solvent extraction was performed for fifteen coal samples of different ranks with eight solvents under mild conditions. Statistical analyses were then conducted to find correlations between the extraction yields and the coal and solvent characteristics. The extraction yield was strongly correlated with the atomic H/C ratio or volatile matter content. Among the solvent properties, the correlation between the electron donor, acceptor number (DN-AN) and yield was confirmed to be high. The results of multiple regression showed that positive correlations were found with the content of volatile matter of coal and polar force, DN-AN of solvent. Whereas negative correlations were found with the Ca/Mg content of coal and dispersion force, hydrogen bonding force of solvent. The regressionequation- calculated value was similar to the experimental value.  相似文献   

14.
As part of research to examine coal conversion in solvents containing high-boiling-point components, experimental studies were carried out with model compound solvents. The dissolution of bituminous and subbituminous coals was investigated in pyrene-tetralin and 2-methylnaphthalene-tetralin mixtures. The effects of donor level, gas atmosphere, hydrogen pressure and conversion temperature were determined. At 400 °C, in the presence of hydrogen gas, pyrene-tetralin solvent mixtures show synergism in coal conversion. At donor concentrations as low at 15 wt%, the degree of conversion was almost as high as in pure tetralin. This phenomenon was not apparent in 2-methylnaphthalene-tetralin mixtures. The relative ease of reduction of pyrene and its ability to shuttle hydrogen is considered to be a principal reason for this difference in behaviour. Conversion in pure pyrene and in pyrene-tetralin mixtures at low donor concentrations increased with increasing hydrogen pressure. At 427 °C, bituminous coal conversion was higher in a 30 wt% tetralin-70 wt% pyrene mixture than in either pure compound. It was found that in the absence of coal pyrene can be hydrogenated by H-transfer from tetralin as well as by reaction with hydrogen gas. This can provide a means to increase the rate of transfer of hydrogen to the dissolving coal through the formation of a very active donor (dihydropyrene). During coal liquefaction, several pathways appear to be available for hydrogen transfer for a given coal, the optimal route being dependent upon the solvent composition and the conditions of reaction.  相似文献   

15.
The reactivity of cycloalkanes, either alone or as part of a solvent mixture, during the solvent extraction of coal at 430 °C has been studied. When used with polyaromatic compounds (? 3 rings) as solvents, cycloalkanes participate in hydrogen donation reactions giving rise to high extraction yields of the coal.  相似文献   

16.
Hydrogen was evolved as hydrogen sulphide when coal-derived solvents for liquefaction were heated with sulphur (dehydrogenation method) and their naphthene contents were quantified by titration and 13C n.m.r. analysis to estimate the amount of transferable hydrogen from hydroaromatics present in the solvent. Examination of synthetic solvents consisting of model compounds confirmed the validity of both approaches. The content of transferable hydrogen, thus measured, in the various solvents correlated well with their liquefaction activities using Morwell brown coal. This suggests that the sufficient stabilization of radical fragments derived thermally from the coal at the initial stage of its liquefaction leads to high conversion. It was also shown that the dehydrogenation method was applicable to non-distillable heavy fractions of coal-derived liquids such as SRC which are difficult to measure by n.m.r. because of their limited solubility.  相似文献   

17.
Hengfu Shui  Zhicai Wang  Meixia Cao 《Fuel》2008,87(13-14):2908-2913
Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal.  相似文献   

18.
Kansk-Achinsk brown coal hydrogenation and swelling in tetralin, in low molecular alcohols, in other solvents and in binary mixtures were studied. Tetralin was found to be the most effective liquefaction solvent, but methanol and ethanol were the active ones in coal swelling. Synergistic effects were observed when the mixtures of tetralin and methanol or ethanol were used for liquefaction and swelling. The effect of binary solvents was shown to be due to the ability of alcohol components to cause brown coal to swell improving the availability of the fragments of coal matter for the reactive hydrogen donor tetralin molecules.  相似文献   

19.
以煤溶胀机理、氢键等为基础,从热力学和动力学方面综述了煤溶胀的本质,讨论了溶剂性质、氧化、温度、煤粉粒度及热处理对溶胀动力学的影响。结果表明:溶胀过程中,表观活化能和速率常数不仅与溶剂分子的空间属性有关,还受溶剂分子形状的影响;混合溶剂的协同效应极大地提升了溶胀速率,增大了表观活化能;抽提煤的干燥条件不同及煤经过氧化后,溶胀机理均会发生明显改变。最后详细介绍了煤溶胀技术对煤分子结构的影响及在煤液化方面的应用。  相似文献   

20.
To study the fate of the solvents in the non-catalytic liquefaction of Kentucky bituminous coal, a number of batch liquefaction experiments have been carried out using hydrophenanthrenes and coal-derived hydrogenated recycle solvents. Filtrates from the first runs have been rehydrogenated and used as solvents for additional liquefaction experiments. The reactions have been followed by detailed analysis of the feeds and products.At constant temperature and reaction time, the conversion levels are affected by the amount of transferable hydrogen, Hs (up to a value of about 0.6 wt.% of the feed), by the coal concentration and, to a lesser extent, by the pressurizing gas.The solvents are depleted by isomerization, cracking, and adduction-polymerization reactions. Only about 50% of the initial solvent is available for use in the second-pass runs. In addition, the quality of the second-pass solvents is lower than that of the initial solvents due to a decrease of 6-membered hydroaromatic rings and an increase of 5-membered hydroaromatic rings which are poor hydrogen donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号